Thorlabs Inc.
Visit the Photodiodes page for pricing and availability information

Photodiodes

  • Si, InGaAs, Ge, and Dual Band (Si/InGaAs) Detectors Available
  • Available in TO Can, FC Connector, and Flat Wafer Body Styles
  • Available in Hermetically Sealed Packages

DSD2

FDS10X10

FDG05

FGA01

FGA01FC

FDG03

FGA21

Front

Back

Hide Overview

OVERVIEW

Mounted and Unmounted Detectors
Unmounted Photodiodes (200 - 2600 nm)
Calibrated Photodiodes (350 - 1800 nm)
Mounted Photodiodes (200 - 1800 nm)
Thermopile Detectors (0.2 - 15 µm)
Photovoltaic Detectors (2.0 - 10.6 µm)
Pigtailed Photodiodes (320 - 1000 nm)

Features

  • Si, InGaAs, Ge, and Dual Band (Si/InGaAs) Unmounted Photodiodes Available
  • Wavelength Ranges from 200 to 2600 nm
  • FDS100 Si Photodiode Also Available in Packs of 5, 10, or 50

Thorlabs stocks a wide selection of photodiodes (PD) with various active area sizes and packages. Discrete PIN junction photodiodes include indium gallium arsenide (InGaAs) and silicon (Si) materials. Germanium (Ge) photodiodes, which are based on an N-on-P structure, are also available.

Our fastest photodiodes are the FDS015, FDS02, and FDS025 Si photodiodes. The FDS015 Si photodiode has a 35 ps rise time and a 0.65 pF junction capacitance, making it the highest speed, lowest capacitance photodiode offered below. Alternatively, the FD11A Si photodiode has a dark current of 2 pA, making it our photodiode with the lowest dark current. The FD10D and FD05D are InGaAs photodiodes with high responsivity from 900 to 2600 nm, allowing detection of wavelengths beyond the normal 1800 nm range of typical InGaAs photodiodes. The DSD2 is a dual-band photodiode, which incorporates two photodetectors sandwiched on top of each other (Si substrate on top of an InGaAs substrate), offering a combined wavelength range of 400 to 1700 nm.

To complement our photodiode product line, we offer mounted photodiodes and a range of compatible photodiode sockets. Please note that the PDs sold below are not calibrated, meaning responsivity will differ slightly from lot to lot; refer to the Response Variation tab for more information. We also offer calibrated photodiodes, which come with with NIST-traceable calibration, to correct for the differences in responsivity. Many of our photodiodes can be reverse voltage biased using the PBM42 DC Bias Module for faster speed and higher optical power detection.

For information on the photodiode saturation limit and the noise floor, as well as a collection of Thorlabs-conducted experiments regarding spatial uniformity (or varying responsivity) and dark current as a function of temperature, refer to the Lab Facts tab. This tab also outlines the theory and methods we use to define the specifications of our photodiodes. For example, the Noise Equivalent Power (NEP) as a Function of Temperature section provides background on NEP values specified by shot noise and thermal noise. With zero bias (Photovoltaic Mode), the NEP is specified by the thermal noise only, which is caused by the shunt resistance of the photodiode. The Photodiode Tutorial provides more general information regarding the operation, terminology, and theory of photodiodes.

Inhomogeneity on the edge of an active area of the detector can generate unwanted capacitance and resistance that distorts the time-domain response of a photodiode. Thorlabs therefore recommends that the incident light on the photodiode is well centered on the active area. This can be accomplished by placing a focusing lens or pinhole in front of the detector element.

Thorlabs offers spectral-flattening filters that are designed to improve the response uniformity of our silicon photodiodes. Click here to learn more.


Hide Response Variation

RESPONSE VARIATION

The responsivity of a particular photodiode varies from lot to lot. Due to this, the photodiode you receive may have a slightly different response than what is represented below. For example, to the right, a graph for the FDS1010 photodiode shows the extent that the response may vary. This data was collected from 104 photodiodes. Minimum, Average, and Maximum responsivity was calculated at each data point and has been plotted.

To view typical responsivity vs. wavelength data for each individual photodiode, please click the Info buttons in the product specifications tables below.


Hide Photodiode Tutorial

PHOTODIODE TUTORIAL

Photodiode Tutorial

Theory of Operation

A junction photodiode is an intrinsic device that behaves similarly to an ordinary signal diode, but it generates a photocurrent when light is absorbed in the depleted region of the junction semiconductor. A photodiode is a fast, highly linear device that exhibits high quantum efficiency and may be used in a variety of different applications.

It is necessary to be able to correctly determine the level of the output current to expect and the responsivity based upon the incident light. Depicted in Figure 1 is a junction photodiode model with basic discrete components to help visualize the main characteristics and gain a better understanding of the operation of Thorlabs' photodiodes.

Equation 1
Photodiode Circuit Diagram
Figure 1: Photodiode Model

Photodiode Terminology

Responsivity
The responsivity of a photodiode can be defined as a ratio of generated photocurrent (IPD) to the incident light power (P) at a given wavelength:

Equation 2

Modes of Operation (Photoconductive vs. Photovoltaic)
A photodiode can be operated in one of two modes: photoconductive (reverse bias) or photovoltaic (zero-bias). Mode selection depends upon the application's speed requirements and the amount of tolerable dark current (leakage current).

Photoconductive
In photoconductive mode, an external reverse bias is applied, which is the basis for our DET series detectors. The current measured through the circuit indicates illumination of the device; the measured output current is linearly proportional to the input optical power. Applying a reverse bias increases the width of the depletion junction producing an increased responsivity with a decrease in junction capacitance and produces a very linear response. Operating under these conditions does tend to produce a larger dark current, but this can be limited based upon the photodiode material. (Note: Our DET detectors are reverse biased and cannot be operated under a forward bias.)

Photovoltaic
In photovoltaic mode the photodiode is zero biased. The flow of current out of the device is restricted and a voltage builds up. This mode of operation exploits the photovoltaic effect, which is the basis for solar cells. The amount of dark current is kept at a minimum when operating in photovoltaic mode.

Dark Current
Dark current is leakage current that flows when a bias voltage is applied to a photodiode. When operating in a photoconductive mode, there tends to be a higher dark current that varies directly with temperature. Dark current approximately doubles for every 10 °C increase in temperature, and shunt resistance tends to double for every 6 °C rise. Of course, applying a higher bias will decrease the junction capacitance but will increase the amount of dark current present.

The dark current present is also affected by the photodiode material and the size of the active area. Silicon devices generally produce low dark current compared to germanium devices which have high dark currents. The table below lists several photodiode materials and their relative dark currents, speeds, sensitivity, and costs.

Material Dark Current Speed Spectral Range Cost
Silicon (Si) Low High Speed Visible to NIR Low
Germanium (Ge) High Low Speed NIR Low
Gallium Phosphide (GaP) Low High Speed UV to Visible Moderate
Indium Gallium Arsenide (InGaAs) Low High Speed NIR Moderate
Indium Arsenide Antimonide (InAsSb) High Low Speed NIR to MIR High
Extended Range Indium Gallium Arsenide (InGaAs) High High Speed NIR High
Mercury Cadmium Telluride (MCT, HgCdTe) High Low Speed NIR to MIR High

Junction Capacitance
Junction capacitance (Cj) is an important property of a photodiode as this can have a profound impact on the photodiode's bandwidth and response. It should be noted that larger diode areas encompass a greater junction volume with increased charge capacity. In a reverse bias application, the depletion width of the junction is increased, thus effectively reducing the junction capacitance and increasing the response speed.

Bandwidth and Response
A load resistor will react with the photodetector junction capacitance to limit the bandwidth. For best frequency response, a 50 Ω terminator should be used in conjunction with a 50 Ω coaxial cable. The bandwidth (fBW) and the rise time response (tr) can be approximated using the junction capacitance (Cj) and the load resistance (RLOAD):

Equation 3

Noise Equivalent Power
The noise equivalent power (NEP) is the input signal power that results in a signal-to-noise ratio (SNR) of 1 in a 1 Hz output bandwidth. This is useful, as the NEP determines the ability of the detector to detect low level light. In general, the NEP increases with the active area of the detector and is given by the following equation:

Photoconductor NEP

Here, S/N is the Signal to Noise Ratio, Δf is the Noise Bandwidth, and Incident Energy has units of W/cm2. For more information on NEP, please see Thorlabs' Noise Equivalent Power White Paper.

Terminating Resistance
A load resistance is used to convert the generated photocurrent into a voltage (VOUT) for viewing on an oscilloscope:

Equation 4

Depending on the type of the photodiode, load resistance can affect the response speed. For maximum bandwidth, we recommend using a 50 Ω coaxial cable with a 50 Ω terminating resistor at the opposite end of the cable. This will minimize ringing by matching the cable with its characteristic impedance. If bandwidth is not important, you may increase the amount of voltage for a given light level by increasing RLOAD. In an unmatched termination, the length of the coaxial cable can have a profound impact on the response, so it is recommended to keep the cable as short as possible.

Shunt Resistance
Shunt resistance represents the resistance of the zero-biased photodiode junction. An ideal photodiode will have an infinite shunt resistance, but actual values may range from the order of ten Ω to thousands of MΩ and is dependent on the photodiode material. For example, and InGaAs detector has a shunt resistance on the order of 10 MΩ while a Ge detector is in the kΩ range. This can significantly impact the noise current on the photodiode. For most applications, however, the high resistance produces little effect and can be ignored.

Series Resistance
Series resistance is the resistance of the semiconductor material, and this low resistance can generally be ignored. The series resistance arises from the contacts and the wire bonds of the photodiode and is used to mainly determine the linearity of the photodiode under zero bias conditions.

Common Operating Circuits

Reverse Biased DET Circuit
Figure 2: Reverse-Biased Circuit (DET Series Detectors)

The DET series detectors are modeled with the circuit depicted above. The detector is reverse biased to produce a linear response to the applied input light. The amount of photocurrent generated is based upon the incident light and wavelength and can be viewed on an oscilloscope by attaching a load resistance on the output. The function of the RC filter is to filter any high-frequency noise from the input supply that may contribute to a noisy output.

Reverse Biased DET Circuit
Figure 3: Amplified Detector Circuit

One can also use a photodetector with an amplifier for the purpose of achieving high gain. The user can choose whether to operate in Photovoltaic of Photoconductive modes. There are a few benefits of choosing this active circuit:

  • Photovoltaic mode: The circuit is held at zero volts across the photodiode, since point A is held at the same potential as point B by the operational amplifier. This eliminates the possibility of dark current.
  • Photoconductive mode: The photodiode is reversed biased, thus improving the bandwidth while lowering the junction capacitance. The gain of the detector is dependent on the feedback element (Rf). The bandwidth of the detector can be calculated using the following:

Equation 5

where GBP is the amplifier gain bandwidth product and CD is the sum of the junction capacitance and amplifier capacitance.

Effects of Chopping Frequency

The photoconductor signal will remain constant up to the time constant response limit. Many detectors, including PbS, PbSe, HgCdTe (MCT), and InAsSb, have a typical 1/f noise spectrum (i.e., the noise decreases as chopping frequency increases), which has a profound impact on the time constant at lower frequencies.

The detector will exhibit lower responsivity at lower chopping frequencies. Frequency response and detectivity are maximized for

Photoconductor Chopper Equation


Hide Lab Facts

LAB FACTS

Summary
This tab contains a collection of experiments performed at Thorlabs regarding the performance of photodiodes we offer. Each section is its own independent experiment, which can be viewed by clicking in the appropriate box below. Photodiode Saturation Limit and Noise Floor explores how different conditions, including temperature, resistivity, reverse-bias voltage, responsivity, and system bandwidth, can affect noise in a photodiode's output. Photodiode Spatial Uniformity explores variations in the responsivity as a small-diameter light beam is scanned across the active area of the photodiode. Photodiodes with different material compositions are tested, and eight units of one silicon-based model are tested to investigate unit-to-unit variations. Dark Current as a Function of Temperature and Noise Equivalent Power (NEP) as a Function of Temperature describe how dark current and NEP, respectively, vary with temperature and how measurements are affected. Beam Size and Photodiode Saturation shows how the photodiode saturation point changes with the incident beam size and investigates several models to explain the results. Bias Voltage examines the effects of incident power on the effective reverse bias voltage of a photodiode circuit and verifies a reliable model for predicting those changes.

Photodiode Saturation Limit and Noise Floor

About Our Lab Facts
Our application engineers live the experience of our customers by conducting experiments in Alex’s personal lab. Here, they gain a greater understanding of our products’ performance across a range of application spaces. Their results can be found throughout our website on associated product pages in Lab Facts tabs. Experiments are used to compare performance with theory and explore the benefits and drawbacks of using similar products in unique setups, in an attempt to understand the intricacies and practical limitations of our products. In all cases, the theory, procedure, and results are provided to assist with your buying decisions.


Hide Pulse Calculations

PULSE CALCULATIONS

Pulsed Laser Emission: Power and Energy Calculations

Determining whether emission from a pulsed laser is compatible with a device or application can require referencing parameters that are not supplied by the laser's manufacturer. When this is the case, the necessary parameters can typically be calculated from the available information. Calculating peak pulse power, average power, pulse energy, and related parameters can be necessary to achieve desired outcomes including:

  • Protecting biological samples from harm.
  • Measuring the pulsed laser emission without damaging photodetectors and other sensors.
  • Exciting fluorescence and non-linear effects in materials.

Pulsed laser radiation parameters are illustrated in Figure 1 and described in the table. For quick reference, a list of equations are provided below. The document available for download provides this information, as well as an introduction to pulsed laser emission, an overview of relationships among the different parameters, and guidance for applying the calculations. 

 

Equations:

Period and repetition rate are reciprocal:    and 
Pulse energy calculated from average power:       
Average power calculated from pulse energy:        
Peak pulse power estimated from pulse energy:            

Peak power and average power calculated from each other:
  and
Peak power calculated from average power and duty cycle*:
*Duty cycle () is the fraction of time during which there is laser pulse emission.
Pulsed Laser Emission Parameters
Click to Enlarge

Figure 1: Parameters used to describe pulsed laser emission are indicated in the plot (above) and described in the table (below). Pulse energy (E) is the shaded area under the pulse curve. Pulse energy is, equivalently, the area of the diagonally hashed region. 

Parameter Symbol Units Description
Pulse Energy E Joules [J] A measure of one pulse's total emission, which is the only light emitted by the laser over the entire period. The pulse energy equals the shaded area, which is equivalent to the area covered by diagonal hash marks.
Period Δt  Seconds [s]  The amount of time between the start of one pulse and the start of the next.
Average Power Pavg Watts [W] The height on the optical power axis, if the energy emitted by the pulse were uniformly spread over the entire period.
Instantaneous Power P Watts [W] The optical power at a single, specific point in time.
Peak Power Ppeak Watts [W] The maximum instantaneous optical power output by the laser.
Pulse Width Seconds [s] A measure of the time between the beginning and end of the pulse, typically based on the full width half maximum (FWHM) of the pulse shape. Also called pulse duration.
Repetition Rate frep Hertz [Hz] The frequency with which pulses are emitted. Equal to the reciprocal of the period.

Example Calculation:

Is it safe to use a detector with a specified maximum peak optical input power of 75 mW to measure the following pulsed laser emission?

  • Average Power: 1 mW
  • Repetition Rate: 85 MHz
  • Pulse Width: 10 fs

The energy per pulse:

seems low, but the peak pulse power is:

It is not safe to use the detector to measure this pulsed laser emission, since the peak power of the pulses is >5 orders of magnitude higher than the detector's maximum peak optical input power.


Hide Cross Reference

CROSS REFERENCE

The following table lists Thorlabs' selection of photodiodes, photoconductive, and pyroelectric detectors. Item numbers in the same row contain the same detector element.

Photodetector Cross Reference
Wavelength Material Unmounted
Photodiode
Mounted
Photodiode
Biased
Detector
Amplified
Detector
Amplified Detector,
OEM Package
200 - 1100 nm Si FDS010 SM05PD2A
SM05PD2B
DET10A2 PDA10A2 PDAPC5
Si - SM1PD2A - - -
240 - 1170 nm B-Si - - DET20X2 - -
320 - 1000 nm Si - - - PDA8A2 -
320 - 1100 nm Si FD11A SM05PD3A - PDF10A2 -
Si - a - DET100A2 a PDA100A2 a PDAPC2 a
340 - 1100 nm Si FDS10X10 - - - -
350 - 1100 nm Si FDS100
FDS100-CAL b
SM05PD1A
SM05PD1B
DET36A2 PDA36A2 PDAPC1
Si FDS1010
FDS1010-CAL b
SM1PD1A
SM1PD1B
- - -
400 - 1000 nm Si - - - PDA015A2
FPD310-FS-VIS
FPD310-FC-VIS
FPD510-FC-VIS
FPD510-FS-VIS
FPD610-FC-VIS
FPD610-FS-VIS
-
400 - 1100 nm Si FDS015 c - - - -
Si FDS025 c
FDS02 d
- DET02AFC(/M)
DET025AFC(/M)
DET025A(/M)
DET025AL(/M)
- -
400 - 1700 nm Si & InGaAs DSD2 - - - -
500 - 1700 nm InGaAs - - DET10N2 - -
0.6 - 16 µm LiTaO3 - - - PDA13L2e -
750 - 1650 nm InGaAs - - - PDA8GS -
800 - 1700 nm InGaAs FGA015 - - PDA015C2 -
InGaAs FGA21
FGA21-CAL b
SM05PD5A DET20C2 PDA20C2
PDA20CS2
-
InGaAs FGA01 c
FGA01FC d
- DET01CFC(/M) - -
InGaAs FDGA05 c - - PDA05CF2 PDAPC6
InGaAs - - DET08CFC(/M)
DET08C(/M)
DET08CL(/M)
- -
InGaAs - - - PDF10C2 -
800 - 1800 nm Ge FDG03
FDG03-CAL b
SM05PD6A DET30B2 PDA30B2 -
Ge FDG50 - DET50B2 PDA50B2 PDAPC8
Ge FDG05 - - - -
900 - 1700 nm InGaAs FGA10 SM05PD4A DET10C2 PDA10CS2 -
900 - 2600 nm InGaAs FD05D - DET05D2 - -
FD10D - DET10D2 PDA10D2 PDAPC7
950 - 1650 nm InGaAs - - - FPD310-FC-NIR
FPD310-FS-NIR
FPD510-FC-NIR
FPD510-FS-NIR
FPD610-FC-NIR
FPD610-FS-NIR
-
1.0 - 5.8 µm InAsSb - - - PDA10PT(-EC) -
2.0 - 8.0 µm HgCdTe (MCT) VML8T0
VML8T4 f
- - PDAVJ8 -
2.0 - 10.6 µm HgCdTe (MCT) VML10T0
VML10T4 f
- - PDAVJ10 -
2.7 - 5.0 µm HgCdTe (MCT) VL5T0 - - PDAVJ5 -
2.7 - 5.3 µm InAsSb - - - PDA07P2 PDAPC9
  • If you are interested in purchasing the bare photodiode incorporated in these detectors without the printed circuit board, please contact Tech Support.
  • Calibrated Unmounted Photodiode
  • Unmounted TO-46 Can Photodiode
  • Unmounted TO-46 Can Photodiode with FC/PC Bulkhead
  • Pyroelectric Detector
  • Photovoltaic Detector with Thermoelectric Cooler

Hide Si Photodiodes - VIS Wavelengths

Si Photodiodes - VIS Wavelengths

Click Image
for Details
FDS010 FDS010 FDS10X10 FDS100 FDS1010 FDS1010 FDS02 FDS025
Item # FDS010 FD11A FDS10X10 FDS100 FDS1010 FDS015 FDS02 FDS025
Key Feature High Speed, UV Grade Fused Silica Window to Provide Sensitivity Down to 200 nm Lowest Dark Current in TO-18 Can with a Window Low Dark Current in 10 mm x 10 mm Ceramic Package High Speed, Largest Sensor in a TO-5 Can High Speed, Large Active Area and Mounted on an Insulating Ceramic Substrate Highest Speed and Lowest Capacitance in a TO-46 Can with an AR-Coated Window High Speed and Low Capacitance in a Direct Fiber-Coupled FC/PC Package High Speed and Low Capacitance in a TO-46 Can with a Ball Lens
Info info info info info info info info info
Wavelength Range 200 - 1100 nma 320 - 1100 nm 340 - 1100 nm 350 - 1100 nm 350 - 1100 nm 400 - 1100 nm 400 - 1100 nm 400 - 1100 nm
Active Area 0.8 mm2
(Ø1.0 mm)
1.21 mm2
(1.1 mm x 1.1 mm)
100 mm2
(10 mm x 10 mm)
13 mm2
(3.6 mm x 3.6 mm)
100 mm2
(10 mm x 10 mm)
0.018 mm2
(Ø150 µm)
0.049 mm2
(Ø0.25 mm)
0.049 mm2
(Ø0.25 mm)
Rise/Fall Timeb 1 ns / 1 ns
@ 830 nm, 10 V
400 nsc,d
@ 650 nm, 0 V
150 ns / 150 nsd
@ 5 V
10 ns / 10 nsd
@ 632 nm, 20 V
65 ns / 65 nsd
@ 632 nm, 5 V
35 ps / 200 ps
@ 850 nm, 5 V
47 ps / 246 ps
@ 850 nm, 5 V
47 ps / 246 ps
@ 850 nm, 5 V 
NEP (W/Hz1/2) 5.0 x 10-14
@ 830 nm, 10 V
6.8 x 10-16
@ 960 nm, 0 V
1.50 x 10-14
@ 960 nm
1.2 x 10-14
@ 900 nm, 20 V
2.07 x 10-13
@ 970 nm, 5 V
8.60 x 10-15
@ 850 nm, 5 V
9.29 x 10-15
@ 850 nm, 5 V
9.29 x 10-15
@ 850 nm, 5 V
Dark Current 0.3 nA (Typ.)
@ 10 V
2.0 pA (Max)
@ 10 mV
200 pA @ 5 V 1.0 nA (Typ.)
@ 20 V
600 nA (Max)
@ 5 V
0.03 nA (Typ.)
@ 5 V
35 pA (Typ.)
@ 5 V
35 pA (Typ.)
@ 5 V
Junction
Capacitance
6 pF (Typ.) @ 10 V 140 pF (Typ.)
@ 0 V
380 pF @ 5 V 24 pF (Typ.)
@ 20 V
375 pF (Typ.)
@ 5 V
0.65 pF (Typ.)
@ 5 V
0.94 pF (Typ.)
@ 5 V
0.94 pF (Typ.)
@ 5 V
Package TO-5 TO-18 Ceramic TO-5 Ceramic TO-46 TO-46, FC/PC Bulkhead TO-46
Compatible
Sockets
STO5S
STO5P
STO46S
STO46P
Not Available STO5S
STO5P
Not Available STO46S
STO46P
STO46S
STO46P
STO46S
STO46P
Multipacks
Available
- - - 5 Pack (-P5)
10 Pack (-P10)
50 Pack (-P50)
- - - -
  • When long-term UV light is applied, the product specifications may degrade. For example, the product’s UV response may decrease and the dark current may increase. The degree to which the specifications may degrade is based upon factors such as the irradiation level, intensity, and usage time.
  • Typical Values; RL = 50 Ω Unless Otherwise Specified
  • Measured with a 1 kΩ Resistor
  • The photodiode will be slower at NIR wavelengths.

Part Number
Description
Price
Availability
FDS010
Si Photodiode, 1 ns Rise Time, 200 - 1100 nm, Ø1 mm Active Area
$52.86
Today
FD11A
Si Photodiode, 400 ns Rise Time, 320 - 1100 nm, 1.1 mm x 1.1 mm Active Area
$16.00
Today
FDS10X10
Si Photodiode, 150 ns Rise Time, 340 - 1100 nm, 10 mm x 10 mm Active Area
$125.92
Today
FDS100
Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area
$16.40
Today
FDS100-P5
Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 5 Pack
$79.32
Today
FDS100-P10
Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 10 Pack
$153.03
Today
FDS100-P50
Si Photodiode, 10 ns Rise Time, 350 - 1100 nm, 3.6 mm x 3.6 mm Active Area, 50 Pack
$736.61
Today
FDS1010
Si Photodiode, 65 ns Rise Time, 350 - 1100 nm, 10 mm x 10 mm Active Area
$61.18
Today
FDS015
Si Photodiode, 35 ps Rise Time, 400 - 1100 nm, Ø150 µm Active Area
$58.91
Today
FDS02
Si Photodiode, 47 ps Rise Time, 400 - 1100 nm, Ø0.25 mm Active Area, FC/PC Bulkhead
$91.76
Today
FDS025
Si Photodiode, 47 ps Rise Time, 400 - 1100 nm, Ø0.25 mm Active Area
$37.72
Today

Hide InGaAs Photodiodes - NIR Wavelengths

InGaAs Photodiodes - NIR Wavelengths

Click Image
for Details
FDGA05 FGA21 FGA01 FGA01FC FGA01FC FD10D FGA10 FD05D
Item # FGA01 FGA01FC FGA015 FDGA05 FGA21 FGA10 FD05D FD10D
Key Feature High Speed and Low Capacitance in a TO-46 Can with a Ball Lens High Speed and Low Capacitance in a Direct Fiber-Coupled FC/PC Package High Speed and Low Capacitance High Speed, High Responsivity, and Low Capacitance Large Active Area and High Speed High Speed and Low Dark Current Long Wavelength Range Long Wavelength Range and Large Active Area
Info info info info info info info info info
Wavelength Range 800 - 1700 nm 800 - 1700 nm 800 - 1700 nm 800 - 1700 nm 800 - 1700 nm 900 - 1700 nm 900 - 2600 nm 900 - 2600 nm
Active Area 0.01 mm2
(Ø120 µm)
0.01 mm2
(Ø120 µm)
0.018 mm2
(Ø150 µm)
0.196 mm2
(Ø0.5 mm)
3.1 mm2 (Ø2 mm) 0.79 mm2 (Ø1 mm) 0.20 mm2
(Ø0.5 mm)
0.79 mm2
(Ø1.0 mm)
Rise/Fall Timea 300 ps / 300 ps
@ 5 V
300 ps / 300 ps
@ 5 V
300 ps / 300 ps
@ 1550 nm, 5 V
2.5 ns / 2.5 ns
@ 5 V
25 ns / 25 ns
@ 3 V
10 ns / 10 ns
@ 5 V
17 ns / 17 ns
@ 0 V
25 ns / 25 ns
@ 0 V
NEP
(W/Hz1/2)
4.5 x 10-15
@ 1500 nm
4.5 x 10-15
@ 1500 nm
1.3 x 10-14
@ 1550 nm
2.0 x 10-14
@ 1550 nm
6.0 x 10-14
@ 1550 nm
2.5 x 10-14
@ 1550 nm, 5 V
5.0 x 10-13
@ 2300 nm
1.0 x 10-12
@ 2300 nm
Dark Current 0.05 nA (Typ.)
@ 5 V
0.05 nA (Typ.)
@ 5 V
0.5 nA (Typ.)
@ 5 V
6 nA (Typ.)
@ 5 V
50 nA (Typ.)
@ 1 V
1.1 nA (Typ.)
@ 5 V
1 µA (Typ.)
@ 0.5 V
3 µA (Typ.)
@ 0.5 V
Junction
Capacitance
2.0 pF (Typ.) @ 5 V 2.0 pF (Typ.) @ 5 V 1.5 pF (Typ.) @ 5 V 10 pF (Typ.) @ 5 V 100 pF (Typ.) @ 3 V 80 pF (Typ.) @ 5 V 140 pF (Typ.) @ 0 V 500 pF (Typ.) @ 0 V
Package TO-46 TO-46, FC/PC Bulkhead TO-18 TO-46 TO-5 TO-5 TO-18 TO-18
Compatible
Sockets
STO46S
STO46P
STO46S
STO46P
STO46S
STO46P
STO46S
STO46P
STO5S
STO5P
STO5S
STO5P
STO46S
STO46P
STO46S
STO46P
  • Typical Values; RL = 50 Ω Unless Otherwise Specified

Part Number
Description
Price
Availability
FGA01
InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø0.12 mm Active Area
$68.90
Today
FGA01FC
InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø0.12 mm Active Area, FC/PC Bulkhead
$174.62
Today
FGA015
InGaAs Photodiode, 300 ps Rise Time, 800-1700 nm, Ø150 µm Active Area
$64.26
Today
FDGA05
InGaAs Photodiode, 2.5 ns Rise Time, 800-1700 nm, Ø0.5 mm Active Area
$162.75
Today
FGA21
InGaAs Photodiode, 25 ns Rise Time, 800-1700 nm, Ø2 mm Active Area
$264.90
Today
FGA10
InGaAs Photodiode, 10 ns Rise Time, 900-1700 nm, Ø1 mm Active Area
$182.07
Today
FD05D
InGaAs Photodiode, 17 ns Rise Time, 900-2600 nm, Ø0.5 mm Active Area
$140.17
Today
FD10D
InGaAs Photodiode, 25 ns Rise Time, 900-2600 nm, Ø1.0 mm Active Area
$248.28
Today

Hide Dual Band Si/InGaAs Photodiode

Dual Band Si/InGaAs Photodiode

  • Dual Detector Chip Design - Si Over InGaAs - Provides Wide Detector Range
  • 4-Pin TO-5 Package
  • Large Active Area
Item # Info Wavelength
Range
Active
Area
Package Rise/Fall
Timea
NEP
(W/Hz1/2)
Dark
Current
Junction
Capacitance
Compatible
Sockets
DSD2 info 400 - 1100 nm
(Si)
1000 - 1800 nm
(InGaAs)
5.07 mm2
(Ø2.54 mm, Si)
1.77 mm2
(Ø1.50 mm, InGaAs)
TO-5 4.0 µs
(Both Layers)
@ 0 V
1.9 x 10-14
(Si)
2.1 x 10-13
(InGaAs)
1 nA @ 1 V
(Si)
0.5 nA @ 1 V
(InGaAs)
450 pF @ 0 V
(Si)
300 pF @ 0 V
(InGaAs)
Not Available
  • Typical Values; RL = 50 Ω Unless Otherwise Specified

Part Number
Description
Price
Availability
DSD2
Dual Band Si/InGaAs Detector, 4 µs Rise Time, 400 - 1700 nm, Ø2.54/Ø1.5 mm
$664.05
Today

Hide Ge Photodiodes - NIR Wavelengths

Ge Photodiodes - NIR Wavelengths

Click Image
for Details
FDG03 FDG50 FDG05 FDG05
Item # FDG03 FDG05a FDG50 FDG10X10
Key Feature Large Active Area in a TO-5 Can High Speed on a Ceramic Substrate Large Active Area in a TO-8 Can Largest Active Area
Info info info info info
Wavelength Range 800 - 1800 nm 800 - 1800 nm 800 - 1800 nm 800 - 1800 nm
Active Area 7.1 mm2 (Ø3 mm) 19.6 mm2 (Ø5 mm) 19.6 mm2 (Ø5 mm) 100 mm2
(10 mm x 10 mm)
Rise/Fall Timeb 600 ns / 600 ns @ 3 V 220 ns / 220 ns @ 3 V 220 ns / 220 ns (Typ.) @ 10 V 10 μs (Typ.) @ 1 V
NEP 2.6 x 10-12 W/Hz1/2 @ 1550 nm 4.0 x 10-12 W/Hz1/2 @ 1550 nm 4.0 x 10-12 W/Hz1/2 @ 1550 nm 4.0 x 10-12 W/Hz1/2 @ 1550 nmc
Dark Current 4.0 µA (Max) @ 1 V 40 µA (Max) @ 3 V 60 µA (Max) @ 5 V 50 µA (Max) @ 0.3 V
Junction Capacitance  6 nF (Typ.) @ 1 V
4.5 nF (Typ.) @ 3 V
3000 pF (Typ.) @ 3 V 1800 pF (Max) @ 5 V
16000 pF (Max) @ 0 V
80 nF (Typ.) @ 1 V
135 nF (Typ.) @ 0 V
Shunt Resistance 25 kΩ (Min) - 4 kΩ (Typ.) 2 kΩ (Min)
Package TO-5 Ceramic TO-8 Ceramic
Compatible
Sockets
STO5S
STO5P
Not Available STO8S
STO8P
Not Available
  • Please note that the wire leads on the FDG05 and FDG10X10 are attached to the sensor using a conductive epoxy, as soldering them on would damage the sensor. This results in a fragile bond. Care should be taken while handing this unit so that the wire leads are not broken.
  • Typical Values; RL = 50 Ω Unless Otherwise Specified
  • NEP is Specified for the Photovoltaic Mode

Part Number
Description
Price
Availability
FDG03
Ge Photodiode, 600 ns Rise Time, 800 - 1800 nm, Ø3 mm Active Area
$152.05
Today
FDG05
Ge Photodiode, 220 ns Rise Time, 800 - 1800 nm, Ø5 mm Active Area
$289.85
Today
FDG50
Ge Photodiode, 220 ns Rise Time, 800 - 1800 nm, Ø5 mm Active Area
$321.92
Today
FDG10X10
Ge Photodiode, 10 μs Rise Time, 800 - 1800 nm, 10 mm x 10 mm Active Area
$547.37
Today