Quantum and Interband Cascade Lasers: Distributed Feedback, HHL Package


  • DFB QCLs and ICL in Thermoelectrically Cooled HHL Packages
  • Center Wavelengths Between 3.00 and 11.00 µm (3333 and 909 cm-1)
  • Output Power up to 150 mW, Depending on Model
  • Custom Wavelengths, Packages, and Output Powers
    Available Upon Request

QD8500HHLH

Horizontal HHL Package

(Linewidth Shown is Limited by Measurement Resolution)

Related Items


Please Wait
MIR Laser Types
Fabry-Perot TO Can
Two-Tab C-Mount
D-Mount
HHL
Turnkey
Distributed
Feedback
Two-Tab C-Mount
D-Mount
HHL
Turnkey
Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.

Features

  • Single-Wavelength Distributed Feedback Quantum or Interband Cascade Lasers (DFB QCLs and ICLs)
  • High Heat Load Package Simplifies Thermal Management and System Integration
  • Collimated Laser Emission Through Wedged Window
  • Used in Chemical Analysis, Sensing, and IR Countermeasures
  • Custom Packages and Wavelengths from 3 to 12 µm Available via Tech Support

The MIR quantum and interband cascade lasers on this webpage are offered in high heat load (HHL) packages with industry-standard pinouts and package dimensions. Each package incorporates a built-in thermistor and thermoelectric cooler (TEC) for active temperature management and prolonged laser lifetime, and also includes an internal aspheric lens that collimates the laser's output.

Distributed feedback QCLs and ICLs emit at a well defined center wavelength, making them popular for applications such as chemical sensing and sample analysis. They provide single transverse mode operation. By tuning the input current and operating temperature, the laser output can be tuned over a narrow range of at least 1 cm-1. Before shipment, the output spectrum, optical power, and L-I-V curve are measured for each serial-numbered device by an automated test station. These measurements are available below and are also included on a data sheet with the laser.

Our ICLs emit a horizontally polarized beam at wavelengths as long as 4.0 µm, while our QCLs emit a vertically polarized beam at wavelengths as long as 11 µm. ICLs will also typically have lower voltage requirements and threshold currents, thus leading to lower optical output powers. Conversely, QCLs will consume more power and will therefore have higher output powers.

Some of Thorlabs' high heat load DFB quantum and interband cascade lasers are uniquely suited for gas sensing and analysis. Select high heat load QCLs are designed to emit at wavelengths ideal for many gases commonly studied in spectroscopy (see the Spectroscopy tab for more information). These DFB quantum cascade lasers are guaranteed to reach their specified wavelengths within their tuning range and are single wavelength, allowing them to be tuned to specific gas spectra. Thorlabs also sells the ID3250HHLH interband cascade laser, which can be used for methane sensing. A list of these QCLs can be found in the Spectroscopy tab above, and more information is available by clicking on the blue info icons () next to the relevant Item #s below.

Package Details 
As measured from the bottom of the package, the emission height is 12.7 ± 0.13 mm. The output beam is collimated by an AR-coated black diamond aspheric lens and then coupled out of the package through a wedged zinc sulfide (ZnS) window. This wedge prevents back reflections from returning to the laser chip, but also causes the output beam to deviate downward from the normal by either 2.0° ± 1.5° or 2.0° ± 0.75°, as shown in the Drawing tab of the blue info icons (info icon) below. Our stocked lasers are sealed, although the seal is not hermetic; hermetically sealed versions are available by contacting Tech Support.

Each laser is electrically isolated from its mount. Heat loads for these lasers can be up to 38 W, so they must be mounted on a thermally conductive surface to prevent heat buildup. Thorlabs' LCM100(/M) liquid-cooled mount is designed specifically to provide additional thermal regulation of the HHL laser package. The CAB4007A and CAB4007B dual laser diode and TEC connector cables are also available to connect an ITC400xQCL series controller to the LCM100(/M) mount or directly to an HHL laser package, respectively. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler. The Handling tab contains more tips and information. These QCLs and ICLs are specified for CW output. While pulsed output is possible, this application prohibits current tuning, and performance is not guaranteed. These lasers do not have built-in monitor photodiodes and therefore cannot be operated in constant power mode.

For OEM applications, Thorlabs also offers QCLs on a compact D-mount package (12.0 mm × 4.5 mm × 2.8 mm).

High-Power QCLs
Click to Enlarge

Available Wavelengths for Custom DFB Lasers

DFB QCLs at Custom Wavelengths

Thorlabs manufactures custom and OEM quantum cascade lasers in high volumes. We maintain a broad chip inventory at our Jessup, Maryland laser manufacturing facility (see the graph to the left), and can deliver DFB lasers with custom center wavelengths that are qualified to a user-defined wavelength precision.

More details are available on the Custom & OEM Lasers tab. To inquire about pricing and availability, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Current and Temperature Controllers

Use the tables below to select a compatible controller for our MIR lasers. The first table lists the controllers with which a particular MIR laser is compatible, and the second table contains selected information on each controller. Complete information on each controller is available in its full web presentation. We particularly recommend our ITC4002QCL and ITC4005QCL controllers, which have high compliance voltages of 17 V and 20 V, respectively. Together, these drivers support the current and voltage requirements of our entire line of Mid-IR Lasers. To get L-I-V and spectral measurements of a specific, serial-numbered device, click "Choose Item" next to the part number below, then click on the Docs Icon next to the serial number of the device.

Laser and Controller Compatibility

Laser Item # Wavelength Current Controllers Dual Current / Temperature Controllers
    Small Benchtop Large Benchtop Large Benchtop Rack Mounted
ID3250HHLHa 3.00 to 3.50 µm
(3333 to 2857 cm-1)
LDC205C
LDC210C
- ITC4002QCL -
ID3750HHLHa 3.50 to 4.00 µm
(2857 to 2500 cm-1)
LDC205C
LDC210C
- ITC4002QCL -
QD4500HHLHa 4.00 to 5.00 µm
(2500 to 2000 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD4472HHa 4.472 µm
(2236 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD4602HHa 4.602 µm
(2173 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD5500HHLHa 5.00 to 6.00 µm
(2000 to 1667 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD5263HHa 5.263 µm
(1900 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD6500HHLHa 6.00 to 7.00 µm
(1667 to 1429 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD6134HHa 6.134 µm
(1630 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD7500HHLHa 7.00 to 8.00 µm
(1429 to 1250 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD7416HHa 7.416 µm
(1900 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD7716HHa 7.716 µm
(1296 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD7901HHa 7.901 µm
(1266 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD8500HHLHa 8.00 - 9.00 µm
(1250 - 1111 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD8912HHa 8.912 µm
(1122.1 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD9500HHLHa 9.00 - 10.00 µm
(1111 - 1000 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD9062HHa 9.062 µm
(1103.5 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD9697HHa 9.697 µm
(1031 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD10500HHLHa 10.00 to 11.00 µm
(1000 to 909 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD10530HHa 10.530 µm
(949.7 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD10549HHa 10.549 µm
(948 cm-1)
- - ITC4002QCL, ITC4005QCL -
QD10622HHa 10.622 µm
(941 cm-1)
- - ITC4002QCL, ITC4005QCL -
  • Thorlabs offers the CAB4007A and CAB4007B connector cables for connecting high heat load lasers to the ITC4002QCL or ITC4005QCL controllers. Please note that third-party cables for these packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler.

 

Controller Selection Guide

Controller Item # Controller Type Controller Package Current Range Current Resolution Voltage
LDC205C Current Small Benchtop
(146 mm x 66 mm x 290 mm)
0 to ±0.5 A 10 µA >10 V
LDC210C 0 to ±1 A 100 µA
ITC4002QCL Current / Temperature Large Benchtop
(263 mm x 122 mm x 307 mm)
0 to 2 A 100 µA (Front Panel)
32 µA (Remote Control)
17 V
ITC4005QCL 0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
20 V

Do

  • Provide External Temperature Regulation
    (e.g., Heat Sinks, Fans, and/or Water Cooling)
  • Use a Constant Current Source Specifically Designed for Lasers
  • Observe Static Avoidance Practices
  • Be Careful When Making Electrical Connections

Do Not

  • Expose the Laser to Smoke, Dust, Oils, Adhesive Films, or Flux Fumes
  • Blow on the Laser
  • Drop the Laser Package

Handling High Heat Load Lasers

Proper precautions must be taken when handling and using high heat load lasers. Otherwise, permanent damage to the device will occur. Members of our Technical Support staff are available to discuss possible operation issues.

Avoid Static
Since these lasers are sensitive to electrostatic shock, they should always be handled using standard static avoidance practices.

Avoid Dust and Other Particulates
Contamination of the window must be avoided. Do not blow on the window or expose it to smoke, dust, oils, or adhesive films. The window is particularly sensitive to dust accumulation. During standard operation, dust can burn onto it, which will lead to premature degradation of the laser performance. If operating a high heat load laser for long periods of time outside a cleanroom, it should be sealed in a container to prevent dust accumulation.

Use a Current Source Specifically Designed for Lasers
These lasers should always be used with a high-quality constant current driver specifically designed for use with lasers. Lab-grade power supplies will not provide the low current noise required for stable operation, nor will they prevent current spikes that result in immediate and permanent damage.

Thermally Regulate the Laser
Temperature regulation is required to operate the laser for any amount of time. The temperature regulation apparatus should be rated to dissipate the maximum heat load that can be drawn by the laser. For our high heat load DFB QCLs and ICLs, this value is 38 W.

The bottom face of the high heat load package is machined flat to make proper thermal contact with a heat sink. Ideally, the heat sink will be actively temperature regulated to ensure proper heat conduction. Thorlabs' LCM100(/M) Liquid-Cooled Mount for HHL lasers is capable of disipating up to 140 W of heat at 25 °C making it an ideal choice for temperature-controlled operation of HHL lasers. A fan may also serve to move the heat away from the package and prevent thermal runaway. However, the fan should not blow air on or at the laser itself. Thermal grease, pyrolytic graphite, and water cooling methods may also be employed for temperature regulation.

For assistance in picking a suitable temperature controller for your application, please contact Tech Support.

Carefully Make Electrical Connections
When making electrical connections, care must be taken. The flux fumes created by soldering can cause laser damage, so care must be taken to avoid this.

Although soldering to the leads of our HHL lasers is possible, we generally recommend using cables specifically designed for HHL packages. Thorlabs' CAB4007B LD / TEC cable is specifically designed to connect any standard HHL laser package directly to the ITC400xQCL series of laser diode and TEC controllers. The CAB4007A LD / TEC cable can be used to connect an ITC400xQCL controller directly to the LCM100(/M) mount. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler. If soldering to the leads on an HHL package, the maximum soldering temperature and time are 250 °C and 10 seconds, respectively.

Minimize Physical Handling
As any interaction with the package carries the risk of contamination and damage, any movement of the laser should be planned in advance and carefully carried out. It is important to avoid mechanical shocks. Dropping the laser package from any height can cause the unit to permanently fail.

Selected Distributed Feedback QCLs and ICLsa
Item # Nominal Center Frequency Targeted Gas
ID3250HHLH 3076 cm-1 (3.25 µm) CH4 (Methane)
QD4472HH 2236 cm-1 (4.472 µm) N2O (Nitrous Oxide)
QD4602HH 2173 cm-1 (4.602 µm) CO (Carbon Monoxide)
QD5263HH 1900 cm-1 (5.263 µm) NO (Nitric Oxide)
QD6134HH 1630 cm-1 (6.134 µm) NO2 (Nitrogen Dioxide)
QD7416HH 1348 cm-1 (7.416 µm) SO2 (Sulfur Dioxide)
QD7716HH 1296 cm-1 (7.716 µm) N2O (Nitrous Oxide)
QD7901HH 1266 cm-1 (7.901 µm) H2S (Hydrogen Sulfide)
QD8912HH 1122.1 cm-1 (8.912 µm) NH3 (Ammonia)
QD9062HH 1103.5 cm-1 (9.062 µm) NH3 (Ammonia)
QD9697HH 1031 cm-1 (9.697 µm) O3 (Ozone)
QD10530HH 949.7 cm-1 (10.530 µm) C2H4 (Ethylene)
QD10549HH 948 cm-1 (10.549 µm) SF6 (Sulfur Hexafluoride)
QD10622HH 941 cm-1 (10.622 µm) N2H4 (Hydrazine)
  • This table is intended as a reference. Each DFB QCL and ICL is a unique device with its own spectrum, and does not necessarily emit at the exact absorption line required for a given experiment. To verify that the QCL you receive will meet your needs, please download its data sheet. Click "Choose Item" below, then click on the Docs icon (Docs Icon) next to the serial number of the laser.

Gas-Phase Spectroscopy Using Distributed Feedback Lasers

Distributed Feedback Quantum and Interband Cascade Lasers (DFB QCLs and ICLs) offer many attractive features for spectroscopy. They emit at a single wavelength within the mid-IR, where many gaseous species characteristically absorb. Moreover, their emission wavelength is easily tuned (typical tuning range: 1 - 5 cm-1) by changing the drive current and operating temperature of the laser, making them ideal for isolating narrow gas absorption lines. Finally, quantum cascade lasers offer relatively high output power (typically 40 - 120 mW at rollover current), helping improve measurement sensitivity. ICLs will typically have a low output power, but a far lower power consumption.

The DFB QCLs on this page emit at wavelengths that range from 4.472 to 11.00 µm (2173 cm-1 to 909 cm-1), while our DFB ICLs emit at wavelengths that range from 3.00 to 4.00 µm (3333 cm-1 to 2500 cm-1). If we do not stock the wavelength required for your application, custom wavelengths are available by contacting Tech Support.

The tuning range of individual DFB QCLs and ICLs depends greatly on the actual laser device. Each DFB QCL or ICL is a unique device with its own threshold current, rollover current, and spectrum. Since the wavelength and power of DFB QCLs and ICLs change over the tuning range, operating the lasers near the rollover current is not always desirable in spectroscopy measurements, which require specific wavelengths. The driving current and operating temperature of DFB QCLs and ICLs can be adjusted to change the output signal to the desired wavelength and power.

An example absorption spectrum of nitric oxide (NO) is shown below on the left. The highlighted blue region, centered on 1900 cm-1, overlaps with the tuning range of the QD5263HH QCL; tuning data from a sample QD5263HH QCL is shown below to the right for comparison. The QD5263HH QCLs can be precisely tuned to the NO absorption peak at 1900 cm-1. Click on the blue icons (info) below for more information on how the emission of each laser in the table above overlaps with the absorption profile of the targeted gas.

DFB QCLs and ICLs are ideal for use in photoacoustic spectroscopy, a technique based on the photoacoustic effect that is able to accurately detect trace gas concentrations for a wide variety of applications. Thorlabs offers an Acoustic Detection Module that can be used with our DFB QCLs and ICLs to build custom QEPAS sensors that target the absorption of a specific gas. We also offer a Quartz-Enhanced Photoacoustic Sensor that targets a methane absorption line to detect trace amounts of methane in a gas.


Click to Enlarge

The shaded region overlaps the tuning range of the QD5263HH distributed feedback QCL. See the graph to the right for tuning data from a sample QD5263HH QCL.

Click to Enlarge

Tuning data for a sample QD5263HH distributed feedback QCL. See the graph to the left for the absorption peaks of nitric oxide (NO) that can be detected using this laser.
Laser Packages of QCLs
Click to Enlarge

Some of Our Available Packages
Wire Bonding
Click for Details

Wire Bonding a Quantum Cascade Laser on a C-Mount

Custom & OEM Quantum Cascade and Interband Cascade Lasers

At our semiconductor manufacturing facility in Jessup, Maryland, we build fully packaged mid-IR lasers and gain chips. Our engineering team performs in-house epitaxial growth, wafer fabrication, and laser packaging. We maintain chip inventory from 3 µm to 12 µm, and our vertically integrated facilities are well equipped to fulfill unique requests.

High-Power Fabry-Perot QCLs
For Fabry-Perot lasers, we can reach multi-watt output power on certain custom orders. The available power depends upon several factors, including the wavelength and the desired package.

DFB QCLs at Custom Wavelengths
For distributed feedback (DFB) lasers, we can deliver a wide range of center wavelengths with user-defined wavelength precision. Our semiconductor specialists will take your application requirements into account when discussing the options with you.

The graphs below and photos to the right illustrate some of our custom capabilities. Please visit our semiconductor manufacturing capabilities presentation to learn more.

Contact Thorlabs

Custom QCL Wavelengths
Click to Enlarge

Available Wavelengths for Custom QCLs and ICLs
High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs
QCL Gain Chips
Click to Enlarge

Electroluminescence Spectra of Available Gain Chip Material

Insights into QCLs and ICLs

Scroll down to read about:

  • QCLs and ICLs: Operating Limits and Thermal Rollover

Click here for more insights into lab practices and equipment.

 

QCLs and ICLs: Operating Limits and Thermal Rollover

L-I curves for QCL mount held at different temperatures
Click to Enlarge

Figure 2: This set of L-I curves for a QCL laser illustrates that the mount temperature can affect the peak operating temperature, but that using a temperature controlled mount does not remove the danger of applying a driving current large enough to exceed the rollover point and risk damaging the laser.
L-I curve for QCL laser, rollover region indicated
Click to Enlarge

Figure 1: This example of an L-I curve for a QCL laser illustrates the typical non-linear slope and rollover region exhibited by QCL and ICL lasers. Operating parameters determine the heat load carried by the lasing region, which influences the peak output power. This laser was installed in a temperature controlled mount set to 25 °C.

The light vs. driving current (L-I) curves measured for quantum and interband cascade Lasers (QCLs and ICLs) include a rollover region, which is enclosed by the red box in Figure 1.

The rollover region includes the peak output power of the laser, which corresponds to a driving current of just under 500 mA in this example. Applying higher drive currents risks damaging the laser.

Laser Operation
These lasers operate by forcing electrons down a controlled series of energy steps, which are created by the laser's semiconductor layer structure and an applied bias voltage. The driving current supplies the electrons.

An electron must give up some of its energy to drop down to a lower energy level. When an electron descends one of the laser's energy steps, the electron loses energy in the form of a photon. But, the electron can also lose energy by giving it to the semiconductor material as heat, instead of emitting a photon.

Heat Build Up
Lasers are not 100% efficient in forcing electrons to surrender their energy in the form of photons. The electrons that lose their energy as heat cause the temperature of the lasing region to increase.

Conversely, heat in the lasing region can be absorbed by electrons. This boost in energy can scatter electrons away from the path leading down the laser's energy steps. Later, scattered electrons typically lose energy as heat, instead of as photons.

As the temperature of the lasing region increases, more electrons are scattered, and a smaller fraction of them produce light instead of heat. Rising temperatures can also result in changes to the laser's energy levels that make it harder for electrons to emit photons. These processes work together to increase the temperature of the lasing region and to decrease the efficiency with which the laser converts current to laser light.

Operating Limits are Determined by the Heat Load
Ideally, the slope of the L-I curve would be linear above the threshold current, which is around 270 mA in Figure 1. Instead, the slope decreases as the driving current increases, which is due to the effects from the rising temperature of the lasing region. Rollover occurs when the laser is no longer effective in converting additional current to laser light. Instead, the extra driving creates only heat. When the current is high enough, the strong localized heating of the laser region will cause the laser to fail.

A temperature controlled mount is typically necessary to help manage the temperature of the lasing region. But, since the thermal conductivity of the semiconductor material is not high, heat can still build up in the lasing region. As illustrated in Figure 2, the mount temperature affects the peak optical output power but does not prevent rollover.

The maximum drive current and the maximum optical output power of QCLs and ICLs depend on the operating conditions, since these determine the heat load of the lasing region.

Date of Last Edit: Dec. 4, 2019


Posted Comments:
Mike H  (posted 2022-10-05 17:46:08.467)
I don't see any information about pinouts for the HHL package. They don't appear to match any of the cables suggested with the QCL drivers.
ksosnowski  (posted 2022-10-07 11:25:40.0)
Thanks for reaching out to Thorlabs. The pinouts for each diode can be found on the last page of the spec sheet. Unfortunately we do not have a cable or mount for the HHL package currently. Although soldering to the leads of our HHL lasers is possible, we generally recommend using cables specifically designed for HHL packages. Please note that third-party cables for high heat load packages are typically not rated for the 4.5 A maximum current of the internal thermoelectric cooler. If soldering to the leads on an HHL package, the maximum soldering temperature and time are 250 °C and 10 seconds, respectively.
harshad pansuriya  (posted 2021-12-20 03:42:18.6)
we are interesting for this product we are working in gas analyzer development
jgreschler  (posted 2021-12-23 10:44:01.0)
Thank you for reaching out to Thorlabs. I have reached out to you directly to discuss this further.
user  (posted 2020-07-28 07:57:43.757)
Hello, I would like to know if I can push the power output of the laser diode to higher values then the ones given here. The way that I understood the limitations of the diode is as follows: When applying a DC current to the diode there is a threshold such that increasing the current intensity will not result in higher output powers, but rather just heat up the laser diode. So I was wondering if I could circumvent the heat build-up inside the diode by only using the laser diode to shot pulses of the order of 100 micros. My hope is that during those short pulses higher power output values will be reached without overheating the lasing material. I was wondering if this strategy is legit or if it will most likely damage the laser diode. I am happy about any thoughts or comments. Thanks in advance.
YLohia  (posted 2020-07-30 03:11:27.0)
Hello, thank you for contacting Thorlabs. It is indeed possible to get high powers out of these, either with pulsed operation or with adequate cooling. I have reached out to you directly to discuss this further.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW110 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW50 mA2.0 V--Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550N1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB1550PN1555 nm130 mW (Min)1800 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16421642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1642P1642 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
DFB16461646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1646P1646 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
DFB16501650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1650P1650 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
DFB16541654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1654P1654 nm80 mW900 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
IF3400T13.40 µm (FP)30 mW300 mA4 V40°70°Single Transverse ModeØ9 mm
ID3750HHLH3.50 - 4.00 µm (DFB)5 mW300 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QD4500HHLH4.00 - 5.00 µm (DFB)80 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5500HHLH5.00 - 6.00 µm (DFB)150 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6500HHLH6.00 - 7.00 µm (DFB)80 mW600 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

3.00 - 4.00 µm Center Wavelength DFB ICL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
ID3250HHLH info Varies from 3.00 to 3.50 µm
(3333 to 2857 cm-1)
2 cm-1 5 mW (Typ.) 400 mA Yes Single Frequencyd CH4 (Methane)e
ID3750HHLH info Varies from 3.50 to 4.00 µm
(2857 to 2500 cm-1)
2 cm-1 5 mW (Typ.) 300 mA H2CO (Formaldehyde)f
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of methane can be found by clicking the blue info icon above (info icon) and selecting the Methane tab.
  • A comparison between the center wavelength range and the spectral lines of formaldehyde can be found by clicking the blue info icon above (info icon) and selecting the Formaldehyde tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemID3250HHLH Support Documentation
ID3250HHLHCustomer Inspired! DFB ICL, 3.00 - 3.50 μm CWL, 2 cm⁻¹ Tuning, 5 mW, Horizontal HHL
$11,526.64
Today
Choose ItemID3750HHLH Support Documentation
ID3750HHLHNEW!DFB ICL, 3.50 - 4.00 μm CWL, 2 cm⁻¹ Tuning, 5 mW, Horizontal HHL
$11,526.64
Today
Back to Top

4.00 - 5.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD4500HHLH info Varies from 4.00 to 5.00 µm
(2500 to 2000 cm-1)
3 cm-1 80 mW (Typ.) 500 mA Yes Single Frequencyd N/A
QD4472HH info 4.472 µm
(2236 cm-1)
3 cm-1 85 mW (Typ.) 500 mA N2O
(Nitrous Oxide)e
QD4602HH info 4.602 µm
(2173 cm-1)
3 cm-1 150 mW (Typ.) 1000 mA CO
(Carbon Monoxide)f
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of nitrous oxide can be found by clicking the blue info icon above (info icon) and selecting the Nitrous Oxide tab.
  • A comparison between the center wavelength range and the spectral lines of carbon monoxide can be found by clicking the blue info icon above (info icon) and selecting the Carbon Monoxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD4500HHLH Support Documentation
QD4500HHLHDFB QCL, 4.00 - 5.00 μm CWL, 3 cm⁻¹ Tuning, 80 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD4472HH Support Documentation
QD4472HHDFB QCL, 4.472 μm CWL, 3 cm⁻¹ Tuning, 85 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD4602HH Support Documentation
QD4602HHDFB QCL, 4.602 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

5.00 - 6.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD5500HHLH info Varies from 5.00 to 6.00 µm
(2000 to 1667 cm-1)
3 cm-1 150 mW (Typ.) 500 mA Yes Single Frequencyd N/A
QD5263HH info 5.263 µm
(1900 cm-1)
3 cm-1 130 mW (Typ.) 1000 mA NO (Nitric Oxide)e
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of nitric oxide can be found by clicking the blue info icon above (info icon) and selecting the Nitric Oxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD5500HHLH Support Documentation
QD5500HHLHDFB QCL, 5.00 - 6.00 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD5263HH Support Documentation
QD5263HHDFB QCL, 5.263 μm CWL, 3 cm⁻¹ Tuning, 130 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

6.00 - 7.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD6500HHLH info Varies from 6.00 to 7.00 µm (1667 to 1429 cm-1) 3 cm-1 80 mW (Typ.) 600 mA Yes Single Frequencyd N/A
QD6134HH info 6.134 µm
(1630 cm-1)
50 mW (Typ.) 1000 mA NO2 (Nitrogen Dioxide)e
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of nitrogen dioxide can be found by clicking the blue info icon above (info icon) and selecting the Nitrogen Dioxide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD6500HHLH Support Documentation
QD6500HHLHDFB QCL, 6.00 - 7.00 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD6134HH Support Documentation
QD6134HHDFB QCL, 6.134 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

7.00 - 8.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD7500HHLH info Varies from 7.00 to 8.00 µm
(1429 to 1250 cm-1)
3 cm-1 50 mW (Typ.) 700 mA Yes Single Frequencyd N/A
QD7416HH info 7.416 µm
(1348 cm-1)
3 cm-1 100 mW (Typ.) 1000 mA SO2 (Sulfur Dioxide)e
QD7716HH info 7.716 µm
(1296 cm-1)
3 cm-1 30 mW (Typ.) N2O (Nitrous Oxide)f
QD7901HH info 7.901 µm
(1266 cm-1)
3 cm-1 50 mW (Typ.) 700 mA H2S (Hydrogen Sulfide)g
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of sulfur dioxide can be found by clicking the blue info icon above (info icon) and selecting the Sulfur Dioxide tab.
  • A comparison between the center wavelength range and the spectral lines of nitrous oxide can be found by clicking the blue info icon above (info icon) and selecting the Nitrous Oxide tab.
  • A comparison between the center wavelength range and the spectral lines of hydrogen sulfide can be found by clicking the blue info icon above (info icon) and selecting the Hydrogen Sulfide tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD7500HHLH Support Documentation
QD7500HHLHDFB QCL, 7.00 - 8.00 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD7416HH Support Documentation
QD7416HHDFB QCL, 7.416 μm CWL, 3 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD7716HH Support Documentation
QD7716HHDFB QCL, 7.716 μm CWL, 3 cm⁻¹ Tuning, 30 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD7901HH Support Documentation
QD7901HHDFB QCL, 7.901 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

8.00 - 9.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD8500HHLH info Varies from 8.00 to 9.00 µm
(1250 to 1111 cm-1)
2.5 cm-1 100 mW (Typ.) 600 mA Yes Single Frequencyd N/A
QD8912HH info 8.912 µm
(1122.1 cm-1)
3 cm-1 150 mW (Typ.) 1000 mA NH3 (Ammonia)e
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of ammonia can be found by clicking the blue info icon above () and selecting the Ammonia tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD8500HHLH Support Documentation
QD8500HHLHDFB QCL, 8.00 - 9.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD8912HH Support Documentation
QD8912HHDFB QCL, 8.912 μm CWL, 3 cm⁻¹ Tuning, 150 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

9.00 - 10.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD9500HHLH info Varies from 9.00 to 10.00 µm
(1111 to 1000 cm-1)
2.5 cm-1 100 mW (Typ.) 600 mA Yes Single Frequencyd N/A
QD9062HH info 9.062 µm
(1103.5 cm-1)
3 cm-1 130 mW (Typ.) 1000 mA NH3 (Ammonia)e
QD9697HH info 9.697 µm
(1031 cm-1)
3 cm-1 80 mW (Typ.) 1000 mA O3 (Ozone)f
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of ammonia can be found by clicking the blue info icon above () and selecting the Ammonia tab.
  • A comparison between the center wavelength range and the spectral lines of ozone can be found by clicking the blue info icon above () and selecting the Ozone tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD9500HHLH Support Documentation
QD9500HHLHDFB QCL, 9.00 - 10.00 μm CWL, 2.5 cm⁻¹ Tuning, 100 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD9062HH Support Documentation
QD9062HHDFB QCL, 9.062 μm CWL, 3 cm⁻¹ Tuning, 130 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD9697HH Support Documentation
QD9697HHDFB QCL, 9.697 μm CWL, 3 cm⁻¹ Tuning, 80 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Back to Top

10.00 - 11.00 µm Center Wavelength DFB QCL, Horizontal HHL Package

Item # Info Center Wavelengtha Tuning Range (Typ.) Powerb Max Operating Currentb Wavelength Tested Laser Mode Targeted Gasc
QD10500HHLH info Varies from 10.00 to 11.00 µm
(1000 to 909 cm-1)
2.5 cm-1 50 mW (Typ.) 700 mA Yes Single Frequencyd N/A
QD10530HH info 10.530 µm (949.7 cm-1) 3 cm-1 50 mW (Typ.) 1000 mA C2H4 (Ethylene)e
QD10549HH info 10.549 µm (948 cm-1) 3 cm-1 60 mW (Typ.) 1000 mA SF6
(Sulfur Hexafluoride)f
QD10622HH info 10.622 µm (941 cm-1) 3 cm-1 60 mW (Typ.) 1000 mA N2H4 (Hydrazine)g
  • These lasers emit at a well defined wavelength that can be tuned over a narrow range. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first. Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs icon next to the serial number.
  • See the Spectroscopy Tab for Further Discussion
  • Single Longitudinal Mode and Single Transverse Mode
  • A comparison between the center wavelength range and the spectral lines of ethylene can be found by clicking the blue info icon above (info icon) and selecting the Ethylene tab.
  • A comparison between the center wavelength range and the spectral lines of sulfur hexafluoride can be found by clicking the blue info icon above (info icon) and selecting the Sulfur Hexafluoride tab.
  • A comparison between the center wavelength range and the spectral lines of hydrazine can be found by clicking the blue info icon above (info icon) and selecting the Hydrazine tab.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQD10500HHLH Support Documentation
QD10500HHLHDFB QCL, 10.00 - 11.00 μm CWL, 2.5 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$9,103.50
Today
Choose ItemQD10530HH Support Documentation
QD10530HHDFB QCL, 10.530 μm CWL, 3 cm⁻¹ Tuning, 50 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD10549HH Support Documentation
QD10549HHDFB QCL, 10.549 μm CWL, 3 cm⁻¹ Tuning, 60 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today
Choose ItemQD10622HH Support Documentation
QD10622HHDFB QCL, 10.622 μm CWL, 3 cm⁻¹ Tuning, 60 mW, Horizontal HHL
$10,174.50
Volume Pricing
Today