Polaris® Side Optic Retention Mounts for Ø2" Optics
- Designed for Long-Term Stability
- Matched Actuator and Back Plate Threading Minimize Drift and Backlash
- Minimal Temperature-Dependent Hysteresis
- Sapphire Adjuster Seats Prevent Wear Over Time
POLARIS-K2
3-Adjuster Mirror Mount
POLARIS-K2S2
2-Adjuster Mirror Mount
(Mirror Not Included)
US Patent 10,101,559
POLARIS-K2VS2
2-Adjuster Mirror Mount
with Vertical Drives
Please Wait
Click to Enlarge
Each Polaris mount undergoes extensive thermal testing to ensure high-quality performance. Please see the Test Data tab for additional test results.
Quick Links | |
---|---|
3-Adjuster Mounts | |
2-Adjuster Mounts | |
2-Adjuster Mounts with Vertical Drives |
|
Adjuster Accessories | |
Lock Nut | |
Locking Collar | |
Torque Wrench |
Features
- Machined from Heat-Treated Stainless Steel with Low Coefficient of Thermal Expansion (CTE)
- Hardened Stainless Steel Ball Contacts with Sapphire Seats for Durability and Smooth Movement
- Matched Actuators and Back Plate Provide Stability and Smooth Kinematic Adjustment
- Extensive Testing Guarantees no More than 2 μrad of Deviation after 12.5 °C Temperature Cycling (See Test Data Tab for Details)
- Passivated Stainless Steel Surface Ideal for Vacuum and High-Power Laser Cavity Applications
- Custom Mount Configurations are Available by Contacting Tech Support
- Patented Optic Bore Design with Monolithic Flexure Arm
Polaris® Low-Drift Kinematic Mirror Mounts are the ultimate solution for applications requiring stringent long-term alignment stability.
Optic Retention
These Polaris mirror mounts feature a patented optic bore design with a monolithic flexure arm to hold the optic. This design provides high holding force and pointing stability while allowing quick and easy installation of the optic. For more details, please see the Test Data tab.
Polaris optic bores are precision machined to achieve a fit that will provide optimum beam pointing stability over changing environmental conditions such as temperature changes, transportation shock, and vibration. These mounts have had their performance tested and verified with Ø2" optics that have a diameter tolerance of up to +0/-0.1 mm, so this tolerance range is recommended for optimal performance. Note that the mounts are not intended for use with optics that have an outer diameter tolerance greater than zero or smaller metric mirror sizes (Ø50 mm). To view our Polaris mounts designed for Ø50 mm optics, click here.
Polaris® Side Optic Retention Mounts Selection Guide |
---|
Ø1/2" Optic Mounts |
Ø19 mm Optic Mount |
Ø25 mm Optic Mount |
Ø1" Optic Mounts |
Ø1.5" Optic Mount |
Ø50 mm Optic Mount |
Ø2" Optic Mounts |
Ø3" Optic Mounts |
Design
Machined from heat-treated stainless steel, Polaris mounts utilize precision-matched adjusters with ball contacts and sapphire seats to provide smooth kinematic adjustment. As shown on the Test Data tab, these mounts have undergone extensive testing to ensure high-quality performance. The Polaris design addresses all of the common causes of beam misalignment; please refer to the Design Features tab for detailed information.
Post Mounting
The Polaris mirror mounts are equipped with #8 (M4) counterbores for post mounting. Select mounts also include Ø2 mm alignment pin holes around the mounting counterbore, allowing for precision alignments when paired with our posts for Polaris mirror mounts. See the Usage Tips tab for more recommendations about mounting configurations.
Cleanroom and Vacuum Compatibility
All Polaris mounts, removable knobs, lock nuts, and locking collars sold on this page are designed to be compatible with cleanroom and vacuum applications. See the Specs tab and the Design Features tab for details.
Item # | POLARIS-K2 | POLARIS-K2S3 | POLARIS-K2S1 | POLARIS-K2S2 | POLARIS-K2VS2 | POLARIS-K2VS2L |
---|---|---|---|---|---|---|
Optic Sizea | Ø2" | |||||
Optic Thickness (Min) | 0.14" (3.5 mm) | |||||
Number of Adjusters | Three | Two | ||||
Adjuster Drive | Removable Knobs |
5/64" (2.00 mm) Hex | Removable Knobs |
5/64" (2.00 mm) Hex | Vertical Drive 5/64" (2.00 mm) Hex |
|
Adjuster Pitch | 100 TPI | |||||
Actuator Matching | Matched Actuator/Body Pairs | |||||
Measured Point-to-Point Mechanical Resolution per Adjuster (Bidirectional Repeatability) |
5 µrad (Typical); 2 µrad (Achievable) | |||||
Adjustment per Revolutionb | ~5 mrad/rev | |||||
Front Plate Translation (Max) | 6 mm | N/A | N/A | |||
Mechanical Angular Range (Nominal) | ±3.4° | ±3° | ||||
Front Plate Separation at Pivot Adjuster | 3.175 mm (Nominal) |
3.175 mm | ||||
Beam Deviationc After Thermal Cycling | ≤2 μrad | |||||
Recommended Optic Mounting Torqued | 4 - 6 oz-in for 12 mm Thick Optics | |||||
Mounting | Four #8 (M4) Counterbores | Three #8 (M4) Counterbores | ||||
Alignment Pin Holes | Two at Each Mounting Facee | |||||
Vacuum Compatibilityf | 10-9 Torr at 25 °C with Proper Bake Out 10-5 Torr at 25 °C without Bake Out Grease Vapor Pressure:10-13 Torr at 20 °C;10-5 Torr at 200 °C Epoxy Meets Low Outgassing Standards NASA ASTM E595, Telcordia GR-1221 |
|||||
Operating Temperature Range | -30 to 200 °C |
Polaris Mirror Mounts Test Data
All of the Polaris Low-Drift Kinematic Mirror Mounts have undergone extensive testing to ensure high-quality performance. Thermal Shock testing confirms the exceptional stability of the mounts and demonstrates that they reliably return to their initial position after a transient temperature shift. Interferometric wavefront distortion testing demonstrates the ability of Polaris mounts to secure an optic without significantly distorting the optical surface.
Positional Repeatability After Thermal Shock
Purpose: This testing was done to determine how reliably the mount returns the mirror, without hysteresis, to its initial position. These measurements show that the alignment of the optical system is unaffected by the temperature shock.
Procedure: After mounting the Polaris to a Ø1" Post, the mirror and post assembly was secured to a stainless steel optical table in a temperature-controlled environment. The mirror was held using the flexure mechanism; see the Usage Tips tab for additional mounting recommendations. A beam from an independently temperature-stabilized laser diode was reflected by the mirror onto a position sensing detector. The temperature of each mirror mount tested was raised to 37 °C. The elevated temperature was maintained in order to soak the mount at a constant temperature. Then the temperature of the mirror mount was returned to the starting temperature. The results of these tests are shown below.
Results: As can be seen in the plots below, when the Polaris mounts were returned to their initial temperature, the angular position (both pitch and yaw) of the mirrors returned to within 2 µrad of its initial position. The performance of the Polaris was tested further by subjecting the mount to repeated temperature change cycles. After each cycle, the mirror’s position reliably returned to within 2 µrad of its initial position.
For Comparison: To get a 1 µrad change in the mount’s position, the 100 TPI adjuster on the POLARIS-K2 Ø2" Polaris mount needs to be rotated by only 0.05° (1/7200 of a turn). A highly skilled operator might be able to make an adjustment as small as 0.3° (1/1200 of a turn), which corresponds to 6 µrad.
Conclusions: The Polaris Mirror Mounts are high-quality, ultra-stable mounts that will reliably return a mirror to its original position after cycling through a temperature change. As a result, the Polaris mounts are ideal for use in applications that require long-term alignment stability.
POLARIS-K2 and POLARIS-K2S3 3-Adjuster Mounts |
---|
Click to Enlarge Thermal Repeatability for Ø2", 3-Adjuster Polaris Mirror Mounts |
||||||||||
Click to Enlarge The plot above shows the final angular position of the Ø2" Polaris Mirror Mounts for 20 consecutive thermal shock tests. The change in temperature is the difference between the starting temperature and the temperature at the end of the test and includes factors such as the variation in room temperature. |
POLARIS-K2S1 and POLARIS-K2S2 2-Adjuster Mounts |
---|
Click to Enlarge Thermal Repeatability for Ø2", 2-Adjuster Polaris Mirror Mounts |
||||||||||
Click to Enlarge The plot above shows the final angular position of the Ø2" Polaris Mirror Mounts for 20 consecutive thermal shock tests. The change in temperature is the difference between the starting temperature and the temperature at the end of the test and includes factors such as the variation in room temperature. |
POLARIS-K2VS2 and POLARIS-K2VS2L 2-Adjuster Mounts, Monolithic Optic Retention, Vertical Drive |
---|
Click to Enlarge Thermal Repeatability for Ø2", 2-Adjuster POLARIS-K2VS2 Mirror Mount. The POLARIS-K2VS2L behaves in a similar manner. |
||||||||||
Click to Enlarge The plot above shows the final angular position of the POLARIS-K2VS2 for 20 consecutive thermal shock tests. The change in temperature is the difference between the starting temperature and the temperature at the end of the test and includes factors such as the variation in room and mount temperature. The POLARIS-K2VS2L behaves in a similar manner. |
Optical Distortion Testing Using a ZYGO Phase-Shifting Interferometer
Mounting stresses are responsible for the strain that results in optical surface distortion. Minimizing distortion effects is crucial; any distortion to the optic affects the reflected wavefront. Our Ø2" Polaris mounts feature a monolithic flexure arm that is designed to provide maximum stability while minimizing optic distortion.
To determine the amount of optic distortion exerted on the mirror by the flexure arm, a ZYGO Phase-Shifting Interferometer was used to measure the wavefront distortion at different torque values (see the images below to the left). Based on results of the tests seen below, we recommend a torque of 4 - 6 oz-in for our Ø2" Polaris mounts, at which the optic wavefront distortion is ≤0.1λ.
Please note that the optimal optic mounting torque can vary by ±1 oz-in due to variations in optic diameter and tolerance buildup.
Procedure:
A broadband dielectric mirror was installed into a Polaris mount using the setscrew to clamp down the flexure arm. Measurements of the optic distortion were then recorded using the ZYGO interferometer. Once each measurement was complete, the amount of force needed to push the optic out of the mount was measured to check optic retention. The wavefront distortion values shown here give peak-to-valley distortion across the entire optic, representing the worst-case scenario; the center of the optic exhibits significantly less distortion than the edge.
Results:
As seen in the table below, the peak-to-valley wavefront distortion was found to be ≤0.1λ when 4 - 6 oz-in of torque was applied to the setscrew of the Ø2" mount.
Torque (oz-in)a | Push-Out Force (lbf)b | Wavefront Distortion (Peak to Valley)c (Click for Example Zygo Screenshot) |
---|---|---|
4 | >12 | 0.075λ to 0.090λ |
5 | 0.076λ to 0.091λ | |
6 | 0.089λ to 0.100λ | |
7 | 0.115λ to 0.121λ | |
8 | 0.128λ to 0.139λ | |
9 | 0.172λ to 0.180λ | |
10 | 0.171λ to 0.182λ |
Click to Enlarge
POLARIS-K2 Wavefront Distortion for Setscrew Torque of
5 oz-in (See Table to the Right for Other Setscrew Torques)
Click to Enlarge
Details of the Polaris Side Optic Retention Design
Several common factors typically lead to beam misalignment in an optical setup. These include temperature-induced hysteresis of the mirror's position, crosstalk, drift, and backlash. Polaris mirror mounts are designed specifically to minimize these misalignment factors and thus provide extremely stable performance. Hours of extensive research, multiple design efforts using sophisticated design tools, and months of rigorous testing went into choosing the best components to provide an ideal solution for experiments requiring ultra-stable performance from a kinematic mirror mount.
Thermal Hysteresis
The temperature in most labs is not constant due to factors such as air conditioning, the number of people in the room, and the operating states of equipment. Thus, it is necessary that all mounts used in an alignment-sensitive optical setup be designed to minimize any thermally induced alignment effects. Thermal effects can be minimized by choosing materials with a low coefficient of thermal expansion (CTE), like stainless steel. However, even mounts made from a material with a low CTE do not typically return the mirror to its initial position when the initial temperature is restored. All the critical components of the Polaris mirror mounts are heat treated prior to assembly since this process removes internal stresses that can cause a temperature-dependent hysteresis. As a result, the alignment of the optical system will be restored when the temperature of the mirror mount is returned to the initial temperature.
The method by which the mirror is secured in the mount is another important design factor for the Polaris; these Polaris mounts offer excellent performance without the use of adhesives. Instead, they use a monolithic flexure arm to hold the edge of the optic. The monolithic design is less sensitive to fluctuations in temperature and induces less distortion on the optic surface than a simple setscrew retention design.
Crosstalk
Crosstalk is minimized by carefully controlling the dimensional tolerances of the front and back plates of the mount so that the pitch and yaw actuators are orthogonal. In addition, sapphire seats are used at all three contact points. Standard metal-to-metal actuator contact points will wear down over time. The polished sapphire seats of the Polaris mounts, in conjunction with the hardened stainless steel actuator tips, maintain the integrity of the contact surfaces over time.
Drift and Backlash
In order to minimize the positional drift of the mirror mount and backlash, it is necessary to limit the amount of play in the adjuster as well as the amount of lubricant used. When an adjustment is made to the actuator, the lubricant will be squeezed out of some spaces and built up in others. This non-equilibrium distribution of lubricant will slowly relax back into an equilibrium state. However, in doing so, this may cause the position of the front plate of the mount to move. The Polaris mounts use adjusters matched to the body or bushings that exceed all industry standards so very little adjuster lubricant is needed. As a result, alignment of the Polaris mounts is extremely stable even after being adjusted (see the Test Data tab for more information). In addition, these adjusters have a smooth feel that allows the user to make small, repeatable adjustments.
Cleanroom and Vacuum Compatibility
All Polaris mounts sold on this page are designed to be compatible with cleanroom and vacuum applications. They are chemically cleaned using the Carpenter AAA passivation method to remove sulfur, iron, and contaminants from the surface. After passivation, they are assembled in a clean environment and then double vacuum bagged to eliminate contamination when transported into a cleanroom.
Click to Enlarge
Polaris Mounts are Shipped Inside Two Vacuum Bag Layers
The sapphire contacts are bonded into place using a NASA-approved low outgassing procedure. In addition, DuPont LVP High-Vacuum (Krytox) Grease, an ultra-high vacuum compatible, low outgassing PTFE grease, is applied to the adjusters. These features provide high vacuum compatibility and low outgassing performance. When operating at pressures below 10-5 Torr, we highly recommend using an appropriate bake out procedure prior to installing the mount in order to minimize contamination caused by outgassing. Please note that the 8-32 and M4 cap screws included with the Polaris mounts are not rated for pressures below 10-5 Torr.
Cleanroom-Compatible Packaging
Each vacuum-compatible Polaris mount is packaged within two vacuum bag layers after assembly in a clean environment, as seen in the image to the right. The vacuum-tight fit of the bags stabilizes the mount, limiting translation of the front plate due to shocks during transportation. The tight fit also minimizes rubbing against the bag, preventing the introduction of bag material shavings that would contaminate the clean mount.
In the vacuum-sealing process, moisture-containing air is drawn out of the packaging. This eliminates unwanted reactions on the surface of the mount without the need for desiccant materials. The vacuum bags protect the mount from contamination by air or dust during transport and storage, and the double-vacuum bag configuration allows for a straightforward and effective cleanroom entry procedure. The outer bag can be removed outside of the cleanroom, allowing the contaminant-free inner bag to be placed into a clean container and transferred into the cleanroom while retaining the benefits of vacuum-bag packaging. Inside the cleanroom, the mount can be removed from the inner bag when ready for use.
Click to Enlarge
The shaded 5 - 7 oz-in region in this plot denotes the recommended optic mounting torque for a 6 mm thick optic in Ø1" Polaris mounts with monolithic optic retention. Over torquing the monolithic flexure arm past the recommended 5 - 7 oz-in range can result in a significant increase in the surface distortion of mounted optics.
Click to Enlarge
A POLARIS-K05 mount can be mounted to a surface using a Ø1" Post for Polaris Mirror Mounts and a Polaris Clamping Arm. Using a 1.50" long post, the optical axis is 2.0" above the table surface.
Through thermal changes and vibrations, the Polaris® kinematic mirror mounts are designed to provide years of use. Below are some usage tips to ensure that the mount provides optimal performance.
Match Materials
Due to its relatively low coefficient of thermal expansion, stainless steel was chosen as the material from which to fabricate the front and back plates of the Polaris mounts. When mounting, we recommend using components fabricated from the same material, such as our Ø1" Posts for Polaris Mirror Mounts and Polaris Clamping Arm.
Use a Wide Post
The Polaris' performance is optimized for use with our Ø1" Posts and our
Optic Mounting
Since an optic is prone to movement within its mounting bore, all optics should be mounted with the Polaris out of the setup to ensure accurate mounting that will minimize misalignment effects. We recommend using a torque wrench when installing an optic in the Polaris mounts. Over torquing the flexure-spring optic retainer can result in dramatic surface distortions (see the graph to the left).
Front Plate’s Position
Polaris mounts are designed to allow adjustments of up to 10° for Ø1/2" mounts, up to 8° for Ø19 mm and Ø1" mounts, and up to 6.8° for Ø2" mounts. To achieve the best performance, it is recommended that the front plate be kept as parallel as possible to the back plate. This ensures the highest stability of the adjustments.
Mount as Close to the Table’s Surface as Possible
To minimize the impact of vibrations and temperature changes, it is recommended that your setup has as low of a profile as possible. Using short posts will reduce the Y-axis translation caused by temperature variations and will minimize any movements caused by vibrations. Mount the Polaris directly onto a flat surface such as a breadboard using a 1/4"-20 to 8-32 thread adapter (AE8E25E) or M6 x 1.0 to M4 x 0.7 adapter (AE4M6M). For direct mounting, the
Polish and Clean the Points of Contact
We highly recommend that the points of contact between the mount and the post, as well as the post and the table, are clean and free of scratches or defects. For best results, we recommend using a polishing stone to clean the table’s surface and a polishing pad (LF1P) for the top and bottom of the post as well as the bottom of the mount.
Use Polaris-Specific Adjustment Tools
We offer stainless steel knobs for most of our Polaris adjusters, either included with the mount or available separately. For securing POLARIS-LNS1 locking collars on any of our Ø2" mounts, we recommend using the POLARIS-T2 spanner wrench; the TW13 torque wrench can be used in combination with the spanner wrench for long-term locking. For long-term adjuster stability, the TW13 can also be used to affix
Not Recommended
We do not recommend taking the adjusters out of the back plate, as it can contaminate the threading. This can reduce the fine adjustment performance significantly. Additionally, do not over-loosen the adjusters. Once the back plate stops moving, do not continue to turn the adjuster in the same direction; doing so may permanently damage the mount. Also, do not pull the front plate away as it might stretch the springs beyond their operating range or crack the sapphire seats. If you experience any issues related to the afformentioned warnings, please contact Tech Support for assistance.
Posted Comments: | |
No Comments Posted |
Thorlabs offers several different general varieties of Polaris mounts, including kinematic side optic retention, SM-threaded, low optic distortion, piezo-actuated, vertical drive, and glue-in optic mounts, a fixed monolithic mirror mount and fixed optic mounts, XY translation mounts, 5-axis kinematic mount, and a kinematic platform mount. Refer to the tables below for our complete line of Polaris mounts, grouped by mount type, optic bore size, and then arranged by optic retention method and adjuster type (or intended application in the case of fixed mounts). We also offer a line of accessories that have been specifically designed for use with our Polaris mounts; these are listed in the table to the lower right. Note that the tables below list Item # suffixes that omit the "POLARIS" prefix for brevity. Click the photos below for details.
Polaris Mount Adjuster Types | |||||
---|---|---|---|---|---|
Side Hole | Hex | Adjuster Knobs | Adjuster Lock Nuts |
Piezo Adjusters | Vertical-Drive Adjusters |
Polaris Kinematic Mounts for Round Optics | ||||
---|---|---|---|---|
Optic Retention Method | Side Lock | SM Threaded | Low Distortion | Glue-In |
Ø1/2" Optics | ||||
2 Side Hole Adjusters | - | - | - | -K05C4 -K05G4 |
2 Hex Adjusters | -K05S1 | -K05T1 | -K05F1 | - |
2 Adjusters with Lock Nuts | -K05S2 | -K05T2 | -K05F2 | - |
2 Piezoelectric Adjusters | -K05P2 | - | - | - |
2 Vertical Adjusters | -K05VS2 -K05VS2L |
- | - | - |
3 Hex Adjusters | -K05 | - | - | - |
3 Adjusters with Lock Nuts | - | -K05T6 | -K05F6 | - |
3 Adjuster Knobs (Tip/Tilt/Z) & 2 Hex Adjusters (X/Y) |
- | -K05XY | - | - |
Ø19 mm (3/4") Optics | ||||
2 Side Hole Adjusters | -K19S4 | - | -K19F4/M | -K19G4 |
Ø25 mm Optics | ||||
2 Side Hole Adjusters | -K25S4/M | - | -K25F4/M | - |
Ø1" Optics | ||||
2 Side Hole Adjusters | -K1S4 | - | - | -K1C4 -K1G4 |
2 Hex Adjusters | -K1E2 -K1-2AH |
-K1T2 | -K1F2 | - |
2 Adjuster Knobs | - | -K1T1 | -K1F1 | - |
2 Piezoelectric Adjusters | -K1S2P | - | - | - |
2 Vertical Adjusters | -K1VS2 -K1VS2L |
- | - | - |
3 Side Hole Adjuster | -K1S5 | - | - | - |
3 Hex Adjusters | -K1E3 -K1-H |
-K1T3 | - | - |
3 Adjuster Knobs | -K1E -K1 |
-K1T | -K1F | - |
3 Piezoelectric Adjusters | -K1S3P | - | - | - |
3 Adjuster Knobs (Tip/Tilt/Z) & 2 Hex Adjusters (X/Y) |
- | -K1XY | - | - |
Optic Retention Method | Side Lock | SM Threaded | Low Distortion | Glue-In |
Ø1.5" Optics | ||||
2 Side Hole Adjusters | -K15S4 | - | -K15F4 | - |
2 Vertical Adjusters | -K15VS2 -K15VS2L |
- | - | - |
3 Adjuster Knobs (Tip/Tilt/Z) & 2 Hex Adjusters (X/Y) |
- | -K15XY | - | - |
Ø50 mm Optics | ||||
2 Side Hole Adjusters | -K50S4/M | - | -K50F4/M | - |
Ø2" Optics | ||||
2 Hex Adjusters | -K2S2 | -K2T2 | -K2F2 | - |
2 Adjuster Knobs | -K2S1 | -K2T1 | -K2F1 | - |
2 Piezoelectric Adjusters | -K2S2P | - | - | - |
2 Vertical Adjusters | -K2VS2 -K2VS2L |
- | - | - |
3 Hex Adjusters | -K2S3 | -K2T3 | -K2F3 | - |
3 Adjuster Knobs | -K2 | -K2T | -K2F | - |
Ø3" Optics | ||||
2 Side Hole Adjusters | -K3S4 | - | - | - |
3 Side Hole Adjusters | -K3S5 | - | - | - |
Ø4" Optics | ||||
2 Side Hole Adjusters | - | - | -K4F4 | - |
Ø6" Optics | ||||
2 Side Hole Adjusters | - | - | -K6F4 | - |
Polaris XY Translation Mounts for Round Optics | ||
---|---|---|
Optic Retention Method | SM Threaded | Representative Photos |
Ø1/2" Optics | ||
2 Hex Adjusters (X/Y) | -05CXY | |
-05XY | ||
3 Adjuster Knobs (Tip/Tilt/Z) & 2 Hex Adjusters (X/Y) |
-K05XY | |
Ø1" Optics | ||
2 Hex Adjusters (X/Y) | -1XY | |
3 Adjuster Knobs (Tip/Tilt/Z) & 2 Hex Adjusters (X/Y) |
-K1XY | |
Ø1.5" Optics | ||
2 Hex Adjusters (X/Y) & 3 Adjuster Knobs (Tip/Tilt/Z)zzz |
-K15XY |
Polaris Fixed Mounts for Round Optics | ||||||
---|---|---|---|---|---|---|
Optic Retention Method | Side Lock | Low Distortion |
Glue-In | Representative Photos |
||
Ø1/2" Optics | |
|||||
Optimized for Mirrors | - | -B05F | -C05G | |||
Optimized for Beamsplitters | -B05S | - | -B05G | |||
Optimized for Lenses | - | - | -L05G | |||
Ø19 mm (Ø3/4") Optics | ||||||
Optimized for Mirrors | -19S50/M | - | - | |||
Ø1" Optics | ||||||
Optimized for Mirrors | - | -B1F | -C1G | |||
Optimized for Beamsplitters | -B1S | - | -B1G | |||
Optimized for Lenses | - | - | -L1G | |||
Ø2" Optics | ||||||
Optimized for Mirrors | - | -B2F | -C2G | |||
Optimized for Beamsplitters | -B2S | - | - |
Polaris Kinematic 1.8" x 1.8" Platform Mount | ||
---|---|---|
Optomech Retention Method | Tapped Holes & Counterbores |
|
2 Adjuster Knobs | -K1M4(/M) |
Accessories for Polaris Mounts | |
---|---|
Description | Representative Photos |
Ø1/2" Posts for Polaris Mounts | |
Ø1" Posts for Polaris Mounts | |
Non-Bridging Clamping Arms | |
45° Mounting Adapter |
- 3 Adjuster Knobs or 3 Hex-Driven Adjusters
- Designed for use with Ø2" Optics
- 100 TPI Matched Actuator/Body Pairs
- ±3.4° Mechanical Angular Range
- ~5 mrad/rev Resolution
- Less than 2 µrad Deviation after Temperature Cycling (See the Test Data Tab for Details)
- Monolithic Flexure Arm for Minimal Optic Distortion and Improved Optic Holding Stability (See the Test Data Tab for Details)
These Ø2" 3-Adjuster Standard Polaris Kinematic Mirror Mounts are designed to provide easy high-resolution adjustment and long-term alignment stability. These mounts feature a monolithic flexure arm that can be actuated using the included screw and a 0.05" (1.3 mm) hex key. The monolithic flexure arm design keeps wavefront distortion on the mounted optic to a minimum while providing an optic retention force that is much stronger than the force provided by our Polaris mounts that use a setscrew and flexure spring design. Performance data on our Ø2" Polaris Mounts with Monolithic Flexure Arms is available on the Test Data tab. A two-adjuster version is also available below.
Kinematic adjustment is provided by three 100 TPI adjusters. These adjusters have a 5/64" (2.0 mm) hex and may be adjusted with our HKTS-5/64 Hex Key Thumbscrew (sold below) or any other 5/64"
(2.0 mm) hex wrench. The POLARIS-K2 is equipped with removable knob adjusters while the POLARIS-K2S3 has hex adjusters; adjusters on both mounts can be locked using the POLARIS-LN1 lock nut or POLARIS-LNS1 locking collar (sold separately below). For applications that require frequent tuning of the adjusters, the lock nut or locking collar only needs to be lightly tightened to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below).
Post mounting is provided by four #8 (M4) counterbores. For custom mounting configurations, two Ø2 mm alignment pin holes are located on each mounting face for setting a precise location and mounting angle. Standard DIN 7-m6 ground dowel pins are recommended (see the red documents icon below for details). We recommend using this mount with a stainless steel post that also has Ø2 mm alignment pin holes, such as our Ø1" Posts for Polaris Mirror Mounts.
- 2 Adjuster Knobs or 2 Hex-Driven Adjusters
- Designed for use with Ø2" Optics
- 100 TPI Matched Actuator/Body Pairs
- ±3.4° Mechanical Angular Range
- ~5 mrad/rev Resolution
- Less than 2 µrad Deviation after Temperature Cycling (See the Test Data Tab for Details)
- Monolithic Flexure Arm for Minimal Optic Distortion and Improved Optic Holding Stability (See the Test Data Tab for Details)
These 2-adjuster Ø2" Standard Polaris Kinematic Mirror Mounts are similar to the standard 3-adjuster versions sold above but feature a hardened steel ball in place of the third adjuster. The 2-adjuster design improves mount stability by limiting the available degrees of freedom for movement. These mounts feature a monolithic flexure arm that can be actuated using the included screw and a 0.05" (1.3 mm) hex key. The monolithic flexure arm design keeps wavefront distortion on the mounted optic to a minimum while providing an optic retention force that is much stronger than the force provided by our Polaris mounts that use a setscrew and flexure spring design. Performance data on our Ø2" Polaris Mounts with Monolithic Flexure Arms is available on the Test Data tab.
The 100 TPI adjusters have a 5/64" (2.0 mm) hex and may be adjusted with our HKTS-5/64 Hex Key Thumbscrew (sold below) or any other 5/64" (2.0 mm) hex wrench. The POLARIS-K2S1 is equipped with removable knob adjusters while the POLARIS-K2S2 has hex adjusters; adjusters on both mounts can be locked using the POLARIS-LN1 lock nuts or POLARIS-LNS1 locking collar (sold separately below). For applications that require frequent tuning of the adjusters, the lock nut or locking collar only needs to be lightly tightened to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below).
Post mounting is provided by four #8 (M4) counterbores. For custom mounting configurations, two Ø2 mm alignment pin holes are located on each mounting face for setting a precise location and mounting angle. Standard DIN 7-m6 ground dowel pins are recommended (see the red documents icon below for details). We recommend using this mount with a stainless steel post that also has Ø2 mm alignment pin holes, such as our Ø1" Posts for Polaris Mirror Mounts.
- 2 Adjuster Knobs or 2 Hex-Driven Adjusters
- Designed for use with Ø2" Optics
- 100 TPI Matched Actuator/Body Pairs
- ±3° Mechanical Angular Range
- ~5 mrad/rev Resolution
- No More than 2 µrad Deviation after Temperature Cycling (See the Test Data Tab for Details)
- Monolithic Flexure Arm which Minimizes Distortion and Improves Optic Holding Stability (US Patent 10,101,559, See Test Data Tab for Details)
- Patented Transverse Drive Design (US Patent 11,320,621)
- Right and Left-Handed Versions Available
These 2-Adjuster Ø2" Polaris Kinematic Mirror Mounts provide long-term stability and high-resolution adjustment using vertical drives. Right-handed and left-handed versions of these mounts are available. The 2-adjuster design improves mount stability by limiting the available degrees of freedom for movement, and the vertical drives allow for adjustment in setups which would not have the space for lateral drives. These mounts feature a monolithic flexure arm that can be actuated using the included screw and a 0.05" (1.3 mm) hex key. The monolithic flexure arm design keeps wavefront distortion on the mounted optic to a minimum while providing an optic retention force that is much stronger than the force provided by our Polaris mounts that use a setscrew and flexure spring design. Performance data on our Ø2" Polaris Mounts with Monolithic Flexure Arms is available on the Test Data tab.
These mirror mounts come with 100 TPI adjusters that feature a 5/64" (2.0 mm) hex and may be adjusted with our HKTS-5/64 Hex Key Thumbscrews (sold below), the hex on the end of the SA1 Adjustment Tool, or any other 5/64" (2.0 mm) hex wrench. Alternatively, POLARIS-N5 removable, low-profile adjustment knobs can be threaded onto the adjusters for improved feel in fine-resolution adjustments, although mechanical angular range may be reduced. The adjusters on these mounts can be locked using the POLARIS-LNS1 Locking Collars. The POLARIS-T2 Spanner Wrench, available separately below, can be used to tighten the collars with the tool oriented along the adjuster rotational axis; a hole through the center of the spanner wrench accepts a 5/64" (2.0 mm) hex key, allowing the adjuster to be held in place while the locking collar is tightened. Additional locking collars are also available separately below.
Post mounting is provided by three #8 (M4) counterbores. For custom mounting configurations, two Ø2 mm alignment pin holes are located on the mounting face for setting a precise location and mounting angle. Standard DIN 7-m6 ground dowel pins are recommended (click on the red documents icon below for details). We recommend using these mounts with stainless steel posts that also have Ø2 mm alignment pin holes, such as our Ø1" Posts for Polaris Mirror Mounts.
- For Convenient Adjustment of 5/64" and 2 mm Hex-Driven Actuators
- Red Anodized Adjustment Knob with Engraved Hex Size
- Replaceable Hex Tip
- Sold in Packages of 4
These 5/64" Hex Key Adjuster Thumbscrews allow for quick adjustment of many 5/64" and 2 mm hex-driven actuators (or standard actuators with the knobs removed). These temporary knobs can be left in the screw's hex socket between adjustments for convenience (see photo to the right). An 8-32 setscrew (5/64" hex) secures the replaceable hex bit, which can be reversed if the tip is stripped. Contact Tech Support to order replacement hex key bits.
We offer hex key thumbscrews in sizes from 0.050" to 3/16" and 2 mm to 5 mm.
Click to Enlarge
POLARIS-K1C4 Mount with Optic and Optional POLARIS-N5 Removable Knobs
Compatible Mounts |
---|
POLARIS-K25S4/M POLARIS-K25F4/M POLARIS-K1C4 POLARIS-K1G4 POLARIS-K1S4 POLARIS-K1S5 POLARIS-K15S4 POLARIS-K15F4 POLARIS-K50S4/M POLARIS-K50F4/M POLARIS-K2VS2 POLARIS-K2VS2L |
- For Convenient Adjustment of 1/4"-100 Adjusters
- Attaches Directly to Adjuster Threading
- Sold Individually
The Polaris® Removable Knobs for 1/4"-100 Adjusters allows the user to adjust a Polaris kinematic mirror mount by hand. The knobs can be used with select Polaris mounts, listed in the table to the right. Note that when the knobs are used with any of these mounts, they will block the side through holes on the adjuster. The adjuster screw's 5/64" (2 mm) hex socket is still usable when the knobs are attached.
The knobs are made from chemically cleaned and heat-treated 303 stainless steel that provides vacuum compatibility down to 10-9 Torr at 25 °C with proper bake out (10-5 Torr at 25 °C without bake out).
Click to Enlarge
F25USK2 Knob Shown Attached to a POLARIS-K1E Mirror Mount
- Ø0.925" Knob for Additional Angular Resolution
- Clearance Hole Allows Access to Hex Socket of the Adjuster
This removable adjustment knob is compatible with many of our 1/4"-100 adjusters, including those used in the Ø1", Ø1.5", and Ø2" Polaris Kinematic Mounts and our Polaris Kinematic Platform Mount. The larger Ø0.925" size provides additional angular resolution over the standard Polaris knobs.
Please note that the F25USK2 knob is not compatible with Polaris mounts that use side-hole adjusters. The recessed bore of knob is not deep enough to allow the knob to engage the threads on the side-hole adjuster.
To install a lock nut without cross threading, gently place the lock nut against the end of the adjuster. "Unscrew" the nut until the threads of the nut and the adjuster align before threading the nut onto the adjuster. This animation shows the installation of a POLARIS-LN1 lock nut on a POLARIS-K1F1 low distortion mount.
- Provides Long Term Adjuster Stability
- Compatible with Select Polaris Mounts
- 0.08" (1.9 mm) Thick
- 13 mm Hex Can Be Tightened with Thin-Head or Cone Wrench
This lock nut is compatible with Polaris mounts that have 1/4"-100 adjusters, excluding the piezo-driven mounts, mounts with low-profile adjusters (Item #s POLARIS-K1E3, and POLARIS-K1E2), and vertically driven mounts (Item #s POLARIS-K1VS2 and POLARIS-K1VS2L). Designed for long-term adjuster stability or applications that are exposed to shock and vibration, the lock nut is pre-greased with the same ultra-high-vacuum-compatible, low-outgassing PTFE grease as the Polaris mounts and has been tested for adjuster fit.
For applications that require frequent tuning of the adjusters, the lock nuts only need to be lightly tightened by hand to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below). POLARIS-LN1 lock nuts have a 13 mm hex. To avoid cross threading the lock nut, place it against the adjuster and "unscrew" the lock nut until you feel a slight drop; then thread the lock nut onto the adjuster.
- Provides Long-Term Adjuster Stability
- Compatible with Select Polaris Mounts
- Low Profile: Ø0.33" (Ø8.4 mm) x 0.08" (1.9 mm) Thick
- Tighten Along Rotational Axis Using the POLARIS-T2 Spanner Wrench
This locking collar is compatible with Polaris mounts that have 1/4"-100 adjusters, excluding the piezo-driven mounts and mounts with low-profile adjusters (Item #s POLARIS-K1E3 and POLARIS-K1E2). Designed for long-term adjuster stability or applications that are exposed to shock and vibration, these locking collars are pre-greased with the same ultra-high-vacuum-compatible, low-outgassing PTFE grease as the Polaris mounts and have been tested for adjuster fit.
The POLARIS-T2 spanner wrench has been specifically designed for use in securing the POLARIS-LNS1 locking collar. The double spanner head enables complete engagement while the design allows locking collar adjustments to be along the same line as the adjuster itself. A center through hole allows a 2 mm ball driver to pass through the spanner wrench, so that the adjuster can be held in position while the locking collar is engaged.
For applications that require frequent tuning of the adjusters, the locking collar only needs to be lightly tightened to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long-term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below) in combination with the POLARIS-T2 spanner wrench. To avoid cross threading the locking collar, place it against the adjuster and "unscrew" the collar until you feel a slight drop; then thread the collar onto the adjuster.
Click for Details
TW13 Torque Wrench Used to Secure POLARIS-LN1 Lock Nut on POLARIS-K2S2 Mirror Mount
Click to Enlarge
The TW13 wrench is engraved with its preset torque value and item #.
- 13 mm Hex for Use with POLARIS-LN1 Lock Nut and POLARIS-T2 Spanner Wrench, as well as POLARIS-LN4 Lock Nut
- Preset Torque Value of 32 oz-in (0.23 N•m)
- Break-Over Design Ensures Proper Torque is Applied
- Ideal for Applications Requiring Long-Term Locking
This torque wrench has a preset torque value of 32 oz-in for use with the
POLARIS-LN1 lock nut used on Polaris® mounts as well as the POLARIS-T2 spanner wrench. The wrench is also compatible with the POLARIS-LN4 lock nut. When the preset torque value has been achieved, the break-over design will cause the pivoting joint to "break," as shown to the right. The wrench's hex head will move back into place once the force is removed. This design prevents further force from being applied to the lock nut. Engraved guidelines indicate the angle the wrench should pivot in order to apply the specified torque; pivoting the handle past these guidelines will over-torque the lock nut. The wrench is also engraved with its preset torque value, torque direction, wrench size, and item # for easy identification in the field.
This wrench is designed to be compatible with cleanroom and vacuum chamber applications. It is chemically cleaned using the Carpenter AAA passivation method to remove sulfur, iron, and contaminants from the surface. After passivation, it is assembled in a clean environment and double vacuum bagged to eliminate contamination when transported into a cleanroom. The wrench has a bead blasted finish to minimize reflections when working with setups that include lasers.
Please note that these wrenches are not intended for use in applications where adjusters are frequently tuned, as these applications typically require torque values of 4 to 8 oz-in (0.03 to 0.06 N·m).