UV Fused Silica Plano-Convex Lenses, V-Coated: 633 nm
- AR V-Coating for 633 nm Deposited on UV-Grade Fused Silica
- Near Best Form for Infinite Conjugate Applications
- Available in Ø1/2" and Ø1" Versions
LA4052-633
LA4765-633
LA4600-633
LA4579-633
Please Wait
Common Specifications | |
---|---|
Lens Shape | Plano-Convex |
Substrate Material | UV-Grade Fused Silicaa |
AR V-Coating | 633 nm |
Reflectance at 633 nm @ AOI = 0° |
<0.25% per Surface |
Diameters Available | 1/2" or 1" |
Diameter Tolerance | +0.00 mm / -0.10 mm |
Thickness Tolerance | ±0.1 mm |
Design Wavelength | 587.6 nm |
Index of Refraction |
1.460 @ 588 nm |
Surface Quality | 20-10 Scratch-Dig |
Surface Flatness (Plano Side) |
λ/2 |
Spherical Surface Power (Convex Side)b |
3λ/2 |
Surface Irregularity (Peak to Valley) |
λ/4 |
Centration | <3 arcmin |
Abbe Number | 67.82 |
Clear Aperture | >90% of Diameter |
Focal Length Tolerance | ±1% |
Zemax Files |
---|
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available. |
Features
- Material: UV-Grade Fused Silica
- AR V-Coating Centered at 633 nm
- Focal Lengths Available from 20.0 mm - 1000.0 mm
Thorlabs' UV-Grade Fused Silica Plano-Convex lenses are available here with an AR V-Coating centered at 633 nm deposited on both surfaces. These lenses have diameters of Ø1/2" or Ø1". Each size is compatible with a multitude of Thorlabs lens mounts. Please see the Mounting Options tab for details.
UV-grade fused silica offers high transmission in the deep UV and exhibits virtually no laser-induced fluorescence (as measured at 193 nm), making it an ideal choice for applications from the UV to the near IR. In addition, UV fused silica has better homogeneity and a lower coefficient of thermal expansion than N-BK7.
The V-coating is a multilayer, antireflective, dielectric, thin-film coating that achieves less than 0.25% reflectance over a narrow wavelength range. Reflectance rises rapidly on either side of this minimum, giving the reflectance curve a "V" shape (see Graphs tab for performance plots). When compared to broadband AR offerings, dielectric V-coats achieve lower reflectivity over a narrower bandwidth and incident angle.
With a reflectance of less than 0.25% at 633 nm, these V-Coated lenses provide exceptional transmittance and are ideal for use with HeNe lasers, as well as applications where light is transmitted through complex optical systems.
Plano-convex lenses have positive focal lengths and are the most popular type of lens element. They are commonly used to focus a collimated incident beam; in such cases the collimated light source should be incident on the curved surface to minimize spherical aberrations. When image quality is not critical, plano-convex lenses can also be used as a substitute for achromatic doublets.
When deciding between a plano-convex lens and a bi-convex lens, both of which cause collimated incident light to converge, it is usually preferable to choose a plano-convex lens if the desired absolute magnification is either less than 0.2 or greater than 5. Between these two values, bi-convex lenses are generally preferred.
Thorlabs offers fixed lens mounts that can be used for mounting the lenses sold here. For mounting high-curvature lenses in select sizes, extra-thick retaining rings with SM05 (0.535"-40) or SM1 (1.035"-40) threading are available that provide extra clearance for spanner wrenches (see the Mounting Options tab for more information).
Optics cases are also available for storage of these lenses. Please click here for information.
UVFS Plano-Convex Lens Selection Guide | |
---|---|
Unmounted Lenses | Mounted Lenses |
Uncoated | Uncoated |
-UV Coating (245 - 400 nm) | -UV Coating (245 - 400 nm) |
-A Coating (350 - 700 nm) | -A Coating (350 - 700 nm) |
-AB Coating (400 - 1100 nm) | - |
T1 Textured Surface (400 - 1100 nm) | T1 Textured Surface (400 - 1100 nm) |
-B Coating (650 - 1050 nm) | -B Coating (650 - 1050 nm) |
-C Coating (1050 - 1700 nm) | -C Coating (1050 - 1700 nm) |
-405 V-Coating (405 nm) | - |
-532 V-Coating (532 nm) | - |
-YAG V-Coating (532/1064 nm) | -YAG V-Coating (532/1064 nm) |
-633 V-Coating (633 nm) | - |
-1064 V-Coating (1064 nm) | - |
-1550 V-Coating (1550 nm) | - |
Quick Links to Other Spherical Singlets | ||||||
---|---|---|---|---|---|---|
Plano-Convex | Bi-Convex | Best Form | Plano-Concave | Bi-Concave | Positive Meniscus | Negative Meniscus |
Below is the transmission curve for a 10 mm thick uncoated sample of UV fused silica when the incident light is normal to the surface. Please note that this is the measured transmission, including surface reflections.
V-Coating:
The V-coating is a multilayer, anti-reflective, dielectric thin-film coating designed to achieve minimal reflectance over a narrow band of wavelengths. Reflectance rises rapidly on either side of this minimum, giving the reflectance curve a “V” shape, as shown in the following performance plots. Thorlabs' V-coats have a minimum reflectance of less than 0.25% per surface and are designed for angles of incidence (AOI) between 0° and 20°. Compared to the broadband AR coatings, V-coatings achieve lower reflectance over a narrower bandwidth when used at the specified AOI. Click here for the raw data.
633 nm V-Coat Reflectance (AOI: 0 - 20°)
The plot on the right is an enlarged view of the shaded region:
Other AR Coatings:
Thorlabs offers UV-grade fused silica lenses with other V-coatings:
- -405 V-Coating (405 nm)
- -YAG V-Coating (532/1064 nm)
- -532 V-Coating (532 nm)
- -633 V-Coating (633 nm)
- -1064 V-Coating (1064 nm)
- -1550 V-Coating (1550 nm)
Recommended Mounting Options for Thorlabs Lenses | ||
---|---|---|
Item # | Mounts for Ø2 mm to Ø10 mm Optics | |
Imperial | Metric | |
(Various) | Fixed Lens Mounts and Mini-Series Fixed Lens Mounts for Small Optics, Ø5 mm to Ø10 mm | |
(Various) | Small Optic Adapters for Use with Standard Fixed Lens Mounts, Ø2 mm to Ø10 mm | |
Item # | Mounts for Ø1/2" (Ø12.7 mm) Optics | |
Imperial | Metric | |
LMR05 | LMR05/M | Fixed Lens Mount for Ø1/2" Optics |
MLH05 | MLH05/M | Mini-Series Fixed Lens Mount for Ø1/2" Optics |
LM05XY | LM05XY/M | Translating Lens Mount for Ø1/2" Optics |
SCP05 | 16 mm Cage System, XY Translation Mount for Ø1/2" Optics | |
(Various) | Ø1/2" Lens Tubes, Optional SM05RRC Retaining Ring for High-Curvature Lenses (See Below) |
|
Item # | Mounts for Ø1" (Ø25.4 mm) Optics | |
Imperial | Metric | |
LMR1 | LMR1/M | Fixed Lens Mount for Ø1" Optics |
LM1XY | LM1XY/M | Translating Lens Mount for Ø1" Optics |
ST1XY-S | ST1XY-S/M | Translating Lens Mount with Micrometer Drives (Other Drives Available) |
CXY1A | 30 mm Cage System, XY Translation Mount for Ø1" Optics | |
(Various) | Ø1" Lens Tubes, Optional SM1RRC Retaining Ring for High-Curvature Lenses (See Below) |
|
Item # | Mount for Ø1.5" Optics | |
Imperial | Metric | |
LMR1.5 | LMR1.5/M | Fixed Lens Mount for Ø1.5" Optics |
(Various) | Ø1.5" Lens Tubes, Optional SM1.5RR Retaining Ring for Ø1.5" Lens Tubes and Mounts |
|
Item # | Mounts for Ø2" (Ø50.8 mm) Optics | |
Imperial | Metric | |
LMR2 | LMR2/M | Fixed Lens Mount for Ø2" Optics |
LM2XY | LM2XY/M | Translating Lens Mount for Ø2" Optics |
CXY2 | 60 mm Cage System, XY Translation Mount for Ø2" Optics |
|
(Various) | Ø2" Lens Tubes, Optional SM2RRC Retaining Ring for High-Curvature Lenses (See Below) |
|
Item # | Adjustable Optic Mounts | |
Imperial | Metric | |
LH1 | LH1/M | Adjustable Mount for Ø0.28" (Ø7.1 mm) to Ø1.80" (Ø45.7 mm) Optics |
LH2 | LH2/M | Adjustable Mount for Ø0.77" (Ø19.6 mm) to Ø2.28" (Ø57.9 mm) Optics |
VG100 | VG100/M | Adjustable Clamp for Ø0.5" (Ø13 mm) to Ø3.5" (Ø89 mm) Optics |
SCL03 | SCL03/M | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics |
SCL04 | SCL04/M | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø3.00" (Ø76.2 mm) Optics |
LH160C | LH160C/M | Adjustable Mount for 60 mm Cage Systems, Ø0.50" (Ø13 mm) to Ø2.00" (Ø50.8 mm) Optics |
SCL60CA | SCL60C/M | Self-Centering Mount for 60 mm Cage Systems, Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics |
Mounting High-Curvature Optics
Thorlabs' retaining rings are used to secure unmounted optics within lens tubes or optic mounts. These rings are secured in position using a compatible spanner wrench. For flat or low-curvature optics, standard retaining rings manufactured from anodized aluminum are available from Ø5 mm to Ø4". For high-curvature optics, extra-thick retaining rings are available in Ø1/2", Ø1", and Ø2" sizes.
Extra-thick retaining rings offer several features that aid in mounting high-curvature optics such as aspheric lenses, short-focal-length plano-convex lenses, and condenser lenses. As shown in the animation to the right, the guide flange of the spanner wrench will collide with the surface of high-curvature lenses when using a standard retaining ring, potentially scratching the optic. This contact also creates a gap between the spanner wrench and retaining ring, preventing the ring from tightening correctly. Extra-thick retaining rings provide the necessary clearance for the spanner wrench to secure the lens without coming into contact with the optic surface.
Posted Comments: | |
No Comments Posted |