Thorlabs Inc.
Visit the 532 nm Diode-Pumped Solid State (DPSS) Lasers page for pricing and availability information

532 nm Diode-Pumped Solid State (DPSS) Lasers

  • 532 nm DPSS Lasers
  • 10 mW or 40 mW Power Output
  • Ø9.5 mm Package with M9 x 0.5 Threading
  • Hermetically Sealed Package

Front

Rear

LDM56DJ

DPSS Laser
Mounting Flange

Application Idea

Our Laser Diode Driver Kits Include an
LD Controller, TEC Controller,
LD/TEC Mount, and Accessories

DJ532-10

532 nm, 10 mW

Hide Overview

OVERVIEW

Class 3B

Features

  • 532 nm Output
  • 10 mW or 40 mW Output Power (CW)
  • 12 mrad Beam Divergence
  • M9 x 0.5 Threaded Housing
  • Same Pin Spacing as Standard Ø5.6 mm Laser Diodes
  • Compatible with the LDM56 Temperature-Controlled Mount

Thorlabs' compact 532 nm Diode-Pumped Solid State (DPSS) green laser modules are a combination of Nd:YVO4 and KTP crystals pumped by an 808 nm laser diode. The front window consists of a wedged glass filter, which blocks the IR source light and hermetically seals the module. DPSS lasers can be used like any typical semiconductor laser diode, but offer a much smaller beam divergence. Please note that these laser modules are intended for CW operation and should not be pulsed.

These lasers are compatible with our LDM56 temperature-controlled laser diode mount using the LDM56DJ mounting flange (sold below). The Ø2.0 mm pin spacing on the rear is identical to our Ø5.6 mm laser diodes. Efficiency is reduced outside of the operating temperature range (20 to 25 °C) as a result of the temperature sensitivity of the laser crystals. In the absence of a regulated heat sink, the pump laser current is enough to heat the laser far above 25 °C.

These lasers can be used with any of our M9-threaded aspheric lens adapters if the temperature of the DPSS laser is controlled. Compatibility with our wide range of SM1-threaded (1.035"-40) components is possible using our S1TM09 adapter. The unthreaded portion of the housing can also be secured inside our AD9.5F Collimator Adapter. When mounting these lasers, it should be noted that there is an X-Y position offset between the pins and the emitted beam. These lasers are manufactured such that the emitted beam is concentric with respect to the housing. If mounting by the pins instead of the M9-threaded front face, the emitted beam will be slightly off-centered from the mount. Please contact Tech Support for more details.

For best results, please follow all typical laser diode handling procedures. Please note that the DJ532-10 (10 mW) monitor current only represents the power of the IR pump laser and not the output of the green DPSS laser. For this reason, we recommend using the DJ532-10 with a constant current laser diode driver. The DJ532-40 does not contain a monitor photodiode.


Hide Laser Safety

LASER SAFETY

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
  • Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign.  Warning Symbol

Hide 532 nm DPSS Lasers

532 nm DPSS Lasers

Item # DJ532-10 DJ532-40
Min Typical Max Min Typical Max
Wavelength 531 nm 532 nm 533 nm 531 nm 532 nm 533 nm
Optical Output Power - 10 mW 20 mW - 40 mW 50 mW
Operating Current @ Poa - 220 mA 250 mA - 330 mA 400 mA
Operating Voltage @ Poa - 1.9 V 2.2 V - 1.9 V 2.2 V
Slope Efficencya 0.1 W/A 0.2 W/A - 0.1 W/A 0.2 W/A -
Beam Divergence, Full Angle - 12 mrad 15 mrad - 12 mrad 15 mrad
Pin Code A E
LD Reverse Voltage (Max) 2 V 2 V
Operating Temperature 20 to 25 °C 20 to 25 °C
Storage Temperature -30 to 70 °C -30 to 70 °C
Pin Diagramb Pin Code A Pin Code E
  • Temperature = 25 °C
  • The monitor photodiode of the DJ532-10 measures the power of the pump source, not the 532 nm output. Therefore, we recommend using these lasers with constant current diode controllers.

Part Number
Description
Price
Availability
DJ532-10
532 nm, 10 mW, A Pin Code, DPSS Laser
$175.81
Today
DJ532-40
532 nm, 40 mW, E Pin Code, DPSS Laser
$212.64
Today

Hide Mounting Flange for DPSS Lasers

Mounting Flange for DPSS Lasers

The LDM56DJ mounting flange is used to secure a 532 nm DPSS laser to the LDM56(/M) temperature-controlled laser diode mount. To use, mount either the DJ532-10 or the DJ532-40 laser in the LDM56(/M) mount. Using the two 2-56 x 3/8" cap head screws provided with the flange, or with the mount itself, attach the flange to the mount.

Please note: this flange is sold separately from the LDM56(/M) Temperature Controlled Laser Diode Mount.


Part Number
Description
Price
Availability
LDM56DJ
DPSS Laser Mounting Flange for LDM56(/M) Laser Diode Mount
$29.99
Today