473 nm Multimode Fiber-Coupled Laser Source for Optogenetics


  • Multimode Fiber-Coupled Laser Source
  • 50.0 mW Output Power
  • Ideal for Optogenetics Applications

S1FC473MM

473 nm, 50.0 mW

S1FC473MM

Shown with M43L01
Multimode Patch Cable (Sold Separately)

Related Items


Please Wait

Features

  • Output Wavelength: 473 nm
  • Multimode FC/PC Fiber Interface
  • 50.0 mW Output Power
  • Low Noise, Stable Output

The S1FC473MM Fiber-Coupled Laser provides 50.0 mW of output power and a wavelength of 473 nm, making it an ideal source for many Optogenetics applications. It includes a pigtailed Fabry-Perot laser diode and current controller in a single benchtop unit. The unit's output can also be externally modulated at 5 kHz full depth/30 kHz small signal. The output of the diode is coupled into a FG105UCA multimode fiber terminated at the FC/PC bulkhead. The unit is compatible with our extensive line of Optogenetics Patch Cables and other Optogenetics Equipment.

The front panel includes a display that shows the output power in mW, an on/off key, an enable button, and a knob to adjust the laser power. The back panel includes a BNC input that allows the laser diode drive current to be controlled via an external voltage source and a remote interlock input. All of our fiber-pigtailed lasers utilize an angled fiber ferrule at the internal laser/fiber launch point to minimize reflections back into the laser diode, thereby increasing the stability of the laser diode's output.

Note: The laser must be off when connecting or disconnecting fibers from the device, particularly for power levels above 10 mW.

We also offer Multimode Fiber-Coupled LED Light Sources, as well as other Fiber-Coupled Laser Sources.

Optogenetics Bilateral Stimulation System Schematic

Click on the components or labels for more details on that particular item:

Optogenetics Bilateral Stimulation Schematic Laser Laser Coupler Coupler Connector Coupler Coupler Connector Coupler Connector Sleeve1 Sleeve2 Sleeve3 Sleeve4 Cannula Cannula Cannula Cannula
Item # S1FC473MM
Wavelength 473 nm
Max Output Powera 50.0 mW
Stability 15 min: ±0.05 dB, 24 hr: ±0.1 dB
(After 1 hr Warm-Up at 25 ± 10 °C Ambient)
Display Accuracy ±10 %
Setpoint Resolution 0.1 mW
Adjustment Range ~0 mW to Full Power
AC Input 115 / 230 VAC (Switch Selectable) 50 - 60 Hz
Modulation Input 0 - 5 V = 0 - Full Power, DC or Sine Wave Input Only
Modulation Bandwidth 5 kHz Full Depth of Modulation
30 kHz Small Signal Modulation
Fiber FG105UCA
Environmental
Operating Temperature 15 to 35 °C
Storage Temperature 0 to 50 °C
  • Output power ranges from 0 - 50.0 mW. Due to variations between laser diodes, maximum output power may be higher.

Modulation In

BNC Female

BNC Female

0 to 5 V Max, 50 Ω

Remote Interlock Input

2.5 mm Mono Phono Jack

 

2.5 mm Phono Jack

Terminals must be shorted either by included plug or user device, i.e. external switch, for laser mode "ON" to be enabled.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
  • Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign.  Warning Symbol

Posted Comments:
No Comments Posted

Optogenetics Selection Guide

Thorlabs offers a wide range of optogenetics components; the compatibility of these products in select standard configurations is discussed in detail here. Please contact Technical Support for assistance with items outside the scope of this guide, including custom fiber components for optogenetics.

 

Single-Site Stimulation

One Light Source to One Cannula Implant

The most straightforward method for in vivo light stimulation of a specimen is to use a single fiber optic with a single LED light source. The single wavelength LED is powered by an LED driver, and then the illumination output is fiber-coupled into a patch cable, which connects to the implanted cannula. See the graphics and expandable compatibility tables below for the necessary patch cables and cannulae to create this setup. To choose the appropriate LED and driver, see below or the full web presentation.

Click on Each Component for More Information

LED Driver LED Driver Fiber-Coupled LED Fiber-Coupled LED SMA to Ferrule Patch Cable with Optional Rotary Joint SMA to Ferrule Patch Cable with Optional Rotary Joint ADAF2 Interconnect ADAF2 Interconnect Fiber Optic Cannula Fiber Optic Cannula



 

Multilateral Stimulation

The ability to accurately and simultaneously direct light to multiple locations within a specimen is desired for many types of optogenetics experiments. For example, bilateral stimulation techniques typically target neurons in two spatially separated regions in order to induce a desired behavior. In more complex experiments involving the simultaneous inhibition and stimulation of neurons, delivering light of two different monochromatic wavelengths within close proximity enables the user to perform these experiments without implanting multiple cannulae, which can increase stress on the specimen.

Multilateral stimulation can be achieved with several different configurations depending on the application requirements. The sections below illustrate examples of different configurations using Thorlabs' optogenetics products.


Option 1: One Light Source to Two Cannula Implants Using Rotary Joint Splitter

Thorlabs' RJ2 1x2 Rotary Joint Splitter is designed for optogenetics applications and is used to split light from a single input evenly between two outputs. The rotary joint interface allows connected patch cables to freely rotate, reducing the risk of fiber damage caused by a moving specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

LED Driver Fiber-Coupled LED Hybrid Patch Cable 1x2 Rotary Joint Splitter OG Patch Cable OG Patch Cable ADAF2 Interconnect ADAF2 Interconnect Fiber Optic Cannula Fiber Optic Cannula Fiber Optic Cannula

Option 2: One or Two Light Sources to Two Cannula Implants

If the intent is for one LED source to connect to two cannulae for simultaneous light modulation, then a bifurcated fiber bundle can be used to split the light from the LED into each respective cannula. For dual wavelength stimulation (mixing two wavelengths in a single cannula) or a more controlled split ratio between cannula, one can use a multimode coupler to connect one or two LEDs to the cannulae. If one cable end is left unused, the spare coupler cable end may be terminated by a light trap. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

Click on Each Component Below for More Information

LED Driver LED Driver Fiber-Coupled LED Fiber-Coupled LED Patch Cable textY-Cable Mating Sleeve Mating Sleeve Mating Sleeve Mating Sleeve Fiber Optic Cannula Fiber Optic Cannula Fiber Optic Cannula Fiber Optic Cannula

LED Driver 2nd LED Driver LED Driver text Fiber-Coupled LED 2nd Fiber-Coupled LED Fiber-Coupled LED text Multimode Coupler Multimode Coupler Text ADAF2 Interconnect ADAF2 Interconnect Text ADAF2 Interconnect ADAF2 Interconnect Text Fiber Optic Cannula Fiber Optic Cannula Fiber Optic Cannula Fiber Optic Cannula


Option 3: One Light Sources to Seven Cannula Implants

If the intent is for one LED source to connect to seven cannulae for simultaneous light modulation, then a 1-to-7 fiber bundle can be used to split the light from the LED into each respective cannula. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

Click on Each Component Below for More Information

  LED Driver


 

Two Light Sources into One Dual-Core Cannula Implant

For bilateral stimulation applications where the two cannulas need to be placed in close proximity (within ~1 mm), Thorlabs offers dual-core patch cables and cannulae that are designed for this specific application. Each core is driven by a separate light source, enabling users to stimulate and/or supress nerve cells in the same region of the specimen. See the graphic and compatibility table below for the necessary cables and cannulae to create this setup. For LEDs and drivers, see below or the full web presentation.

LED Driver 2nd LED Driver LED Driver Text Fiber-Coupled LED 2nd Fiber-Coupled LED Fiber-Coupled LEDs Dual-Core Patch Cable Dual-Core Patch Cable ADAF2 Interconnect ADAF2 Interconnect Fiber Optic Cannula Fiber Optic Cannula

Click on Each Component for More Information

Part Selection Table (Click Links for Item Description Popup)
Common Fiber Properties
Core Diameter 200 µm
Wavelength Range 400 - 2200 nm
NA 0.39
Fiber Type FT200EMT
Ferrule Stylea FC (Ø2.5 mm)
Dual-Core Patch Cable FC/PC Input BFY32FL1
SMA905 Input BFY32SL1
Compatible Mating Sleeve/Interconnect ADAF1
ADAF2
ADAF4-5
Dual-Core Fiber Optic Cannulaec Stainless Steel CFM32L10
CFM32L20
  • FC components have a Ø2.5 mm ferrule end.
  • Patch cables for dual light source to single implant applications are highlighted in green above. Choose a patch cable with an input that matches your light source.
  • Available cannulae are highlighted in orange of the table above. Cannule within the same column are interchangeable.

 

LED Item # Wavelengtha Typical Opsin Output Powerb Color
M405F3c 405 nm mmilCFP, hcriGFP 3.7 mW UV
M430F1 430 nm ChR2 7.5 mW Violet
M455F3 455 nm ChIEF, bPAC 24.5 mW Royal Blue
M470F4 470 nm ChR2, ChR2-SFO 20 mW Blue
M490F4 490 nm Rh-CT, ChR2 (E123A) 2.8 mW Blue
M505F3 505 nm ChRGR, Opto-α1AR, Opto-β2AR 11.7 mW Cyan
M530F3 530 nm C1V1, VChR1 9.6 mW Green
M565F3 565 nm Arch, VChR1-SFO 13.5 mW Lime
M595F2 595 nm ChR2-SFO, eNpHR3.0 11.5 mW Amber
M625F2 625 nm ReChR 17.5 mW Red
  • Click the link for a spectrum and raw data.
  • Typical output power measured with a Ø400 µm Core, 0.39 NA multimode fiber.
  • Precautions must be taken to prevent looking directly at the UV light and UV light protective glasses must be worn to avoid eye damage. Exposure of the skin and other body parts to UV light should be avoided.

Illumination

Fiber-Coupled LEDs and Drivers

Our fiber-coupled LEDs are ideal light sources for optogenetics applications. They feature a variety of wavelength choices and a convenient interconnection to optogenetics patch cables. Thorlabs offers fiber-coupled LEDs with nominal wavelengths ranging from 280 nm to 1050 nm. See the table to the right for the LEDs with the most popular wavelengths for optogenetics. A table of compatible LED drivers can be viewed by clicking below.

Back to Top

473 nm Multimode Fiber-Coupled Laser Source

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
S1FC473MM Support Documentation
S1FC473MMCustomer Inspired! Fiber-Coupled Laser Source, 473 nm, 50.0 mW, MM Fiber, FC/PC
$8,274.89
Today