NIR Laser Diodes: Center Wavelengths from 705 nm to 2000 nm
- Output Powers Up to 2 W
- Multiple Package Styles
- In-House Manufactured and Third-Party Options Available
Ø5.6 mm
Ø9 mm
Chip on Submount
TO Can with
Fiber Pigtail
Butterfly
Ø9 mm
(High Heat Load)
Extended
Butterfly
TO-46
(VCSEL Diode)
Please Wait
Laser Diode Selection Guidea |
---|
Shop by Wavelength |
UV (375 nm) Visible (404 nm - 690 nm) NIR (705 nm - 2000 nm) MIR (4.05 µm - 11.00 µm) |
Shop by Package / Type |
Webpage Features | |
---|---|
Clicking this icon opens a window that contains specifications and mechanical drawings. | |
Clicking this icon allows you to download our standard support documentation. | |
Choose Item |
Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device. |
OEM & Custom Laser Diodes
Thorlabs manufactures custom and high volume OEM laser diodes and other optical semiconductor devices with output wavelengths from 705 nm to 2 µm. To inquire about custom or OEM devices, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.
Features
- Laser Diode Types Include:
- Fabry-Perot (FP)
- Distributed Feedback (DFB)
- Volume Holographic Grating (VHG) Stabilized
- Fiber Bragg Grating (FBG) Stabilized
- Distributed Bragg Reflector (DBR)
- Vertical Cavity Surface Emitting Laser (VCSEL)
- Ultra-Low-Noise (ULN) Hybrid
- Output Powers Up to 2 W
- Center Wavelengths Available from 705 nm to 2000 nm
- Various Packages Available: TO Can, TO Pigtails, Butterfly, Extended Butterfly, C-Mount, and Chip on Submount
- Easily Choose a Compatible Mount Using Our LD Pin Codes
- Compatible with Thorlabs' Laser Diode and TEC Controllers
- OEM Solutions Available
This web page contains Thorlabs' laser diodes with center wavelengths from 705 nm to 2000 nm. Diodes are arranged by wavelength and then power. The tables below list basic specifications to help you narrow down your search quickly. Lasers that are highlighted in light green in these tables below are single-frequency laser diodes. The blue button in the Info column within the tables opens a pop-up window that contains more detailed specifications for each item, as well as mechanical drawings.
Notes on Center Wavelength
While the center wavelength is listed for each laser diode, this is only a typical number. The center wavelength of a particular unit varies from production run to production run, so the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. For many of these items, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics. For products listed as Wavelength Tested that do not have the "Choose Item" option, please contact Tech Support with inquiries about specific wavelengths.
Packages and Mounts
We offer laser diodes in various packages including standard Ø5.6 mm and Ø9 mm TO packages, non-standard TO-46 packages, as well as fiber-pigtailed TO-packaged diodes, butterfly-packaged diodes, extended butterfly-packaged diodes, chip on submounts, and C-mounts. We have categorized the pin configuration of TO-packaged diodes into standard A, B, C, D, E, F, G, and H pin codes (see image below). This pin code allows the user to easily determine compatible mounts. TO-packed diodes are the most widely supported diodes by our product line, followed by butterfly-packaged lasers. Chip on submount and C-mount lasers are better suited for OEM applications. Our ultra-low-noise (ULN) lasers are housed in extended butterfly packages, which are incompatible with standard butterfly mounts and require custom mounting.
Some of our diodes are offered in header packages that can be converted to a sealed TO can package by request, as indicated in the tables below. Please contact Tech Support for details.
Laser Mode and Linewidth
We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single transverse mode (single mode, or SM) and a few are designed for higher-power, multiple-transverse-mode (multimode, or MM) operation. Most of our wavelength-stabilized VHG laser diodes have excellent single mode performance. Some single mode laser diodes can be operated with limited single-longitudinal-mode characteristics (see tables below for additional information). For better side mode suppression ratio (SMSR) performance, consider devices such as DFB lasers, VHG-stabilized lasers, DBR lasers, or external cavity lasers. Thorlabs single-frequency lasers are highlighted in green in the tables below; in particular, our VHG-stabilized, DFB, DBR, and external cavity lasers have narrow linewidths (≤20 MHz for the VHG-stabilized and DFB lasers and <100 kHz for the DBR and ECL lasers). We manufacture ULN laser diodes which allow independent temperature control of the diode and a fiber Bragg grating achieve a typical relative intensity noise -165 dBc/Hz and instantaneous Lorentzian linewidths of less than 100 Hz. Please see the SFL Guide tab above and our Laser Diode Tutorial for more information on these topics and laser diodes in general.
Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device (see our electrostatic shock accessories). Laser diodes are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application. See our optical isolators for potential solutions to this problem.
For all of the pigtailed laser diodes, the laser should be off when connecting or disconnecting the device from other fibers, particularly for lasers with power levels above 10 mW. We recommend cleaning the fiber connector before each use if there is any chance that dust or other contaminants may have deposited on the surface. The laser intensity at the center of the fiber tip can be very high and may burn the tip of the fiber if contaminants are present. While the connectors on the pigtailed laser diodes are cleaned and capped before shipping, we cannot guarantee that they will remain free of contamination after they are removed from the package.
Members of our Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.
Pin Code | Monitor Photodiode |
---|---|
A | Yes |
B | Yes |
C | Yes |
D | Yes |
E | No |
F | Yes |
G | No |
H | No |
Choosing a Collimation Lens for Your Laser Diode
Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application. The second example below is an extension of the procedure, which will show how to circularize an elliptical beam.
Example 1: Collimating a Diverging Beam
- Laser Diode to be Used: L780P010
- Desired Collimated Beam Diameter: Ø3 mm (Major Axis)
When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 8° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an anamorphic prism pair, which magnifies one axis of your beam; for details, see Example 2 below.
Assuming that the thickness of the lens is small compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:
Θ = Divergence Angle | Ø = Beam Diameter | f = Focal Length | r = Collimated Beam Radius = Ø/2 |
Note that the focal length is generally not equal to the needed distance between the light source and the lens.
With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:
0.30 = NALens > NADiode ≈ sin(15°) = 0.26
Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).
A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.
Example 2: Circularizing an Elliptical Beam
Using the laser diode and aspheric lens chosen above, we can use an anamorphic prism pair to convert our collimated, elliptical beam into a circular beam.
Whereas earlier we considered only the larger divergence angle, we now look at the smaller beam divergence of 8°. From this, and using the effective focal length of the A390-B aspheric lens chosen in Example 1, we can determine the length of the semi-minor axis of the elliptical beam after collimation:
r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm
The minor beam diameter is double the semi-minor axis, or 0.64 mm. In order to magnify the minor diameter to be equal to the major diameter of 2.5 mm, we will need an anamorphic prism pair that yields a magnification of 3.9. Thorlabs offers both mounted and unmounted prism pairs. Mounted prism pairs provide the benefit of a stable housing to preserve alignment, while unmounted prism pairs can be positioned at any angle to achieve the exact desired magnification.
The PS883-B mounted prism pair provides a magnification of 4.0 for a 950 nm wavelength beam. Because shorter wavelengths undergo greater magnification when passing through the prism pair, we can expect our 780 nm beam to be magnified by slightly more than 4.0X. Thus, the beam will still maintain a small degree of ellipticity.
Alternatively, we can use the PS871-B unmounted prism pair to achieve the precise magnification of the minor diameter necessary to produce a circular beam. Using the data available here, we see that the PS871-B achieves a magnification of 4.0 when the prisms are positioned at the following angles for a 670 nm wavelength beam:
α1: +34.608° | α2: -1.2455° |
Refer to the diagram to the right for α1 and α2 definitions. Our 780 nm laser will experience slightly less magnification than a 670 nm beam passing through the prisms at these angles. Some trial and error may be required to achieve the exact desired magnification. In general:
- To increase magnification, rotate the first prism clockwise (increasing α1) and rotate the second prism counterclockwise (decreasing α2).
- To reduce magnification, rotate the first prism counterclockwise (decreasing α1) and rotate the second prism clockwise (increasing α2).
Video Insights: Setting Up a TO Can or Butterfly Laser Diode
A laser diode packaged in a butterfly housing can be precisely controlled, in a compact package, when the laser is installed in a mount that includes thermoelectric cooler (TEC) and current drivers. The mount can make it easier, and safer, to operate the laser, but the procedure for installing the laser in the mount and configuring the settings requires some care. This video provides a step-by-step guide, which begins with an introduction to the different components and concludes with the laser operating under TEC control and with the recommended maximum current limit enabled.
Installing a TO can laser diode in a mount and setting it up to run under temperature and current control presents many opportunities to make a mistake that could damage or destroy the laser. This step-by-step guide includes tips for keeping humans and laser diodes safe from harm.
When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser diodes are among the most static-sensitive devices currently made and proper ESD protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been opened. Laser diodes in their original sealed package can be returned for a full refund or credit.
Handling and Storage Precautions
Because of their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes.
Wrist Straps
Use grounded anti-static wrist straps whenever handling diodes.
Anti-Static Mats
Always work on grounded anti-static mats.
Laser Diode Storage
When not in use, short the leads of the laser together to protect against ESD damage.
Operating and Safety Precautions
Use an Appropriate Driver
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current-limiting resistor since it does not provide sufficient regulation to protect the laser diode.
Power Meters
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser diode output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.
Reflections
Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode, giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant-power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.
Heat Sinks
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser diode in a suitable heat sink to remove excess heat from the laser package.
Voltage and Current Overdrive
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.
ESD-Sensitive Device
Laser diodes are susceptible to ESD damage even during operation. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser diode or its mounting apparatus to ESD at all times.
ON/OFF and Power-Supply-Coupled Transients
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High-current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients, and thus surge-protected outlets should always be used when working with laser diodes.
If you have any questions regarding laser diodes, please contact Thorlabs Technical Support for assistance.
Laser Safety and Classification
Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina.
Safe Practices and Light Safety Accessories
- Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
- Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
- Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
- Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
- Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
- Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
- Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
- A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
- All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
- Do not place laser beams at eye level.
- Carry out experiments on an optical table such that all laser beams travel horizontally.
- Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
- Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
- Operate a laser at the minimum power necessary for any operation.
- If possible, reduce the output power of a laser during alignment procedures.
- Use beam shutters and filters to reduce the beam power.
- Post appropriate warning signs or labels near laser setups or rooms.
- Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
- Do not use Laser Viewing Cards in place of a proper Beam Trap.
Laser Classification
Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:
Class | Description | Warning Label |
---|---|---|
1 | This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser. | |
1M | Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly. | |
2 | Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm). | |
2M | Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams. | |
3R | Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power. | |
3B | Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns. | |
4 | This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock. | |
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign. |
Insights into Polarization Conventions
Scroll down to read about:
- Labels Used to Identify Perpendicular and Parallel Components
Click here for more insights into lab practices and equipment.
Labels Used to Identify Perpendicular and Parallel Components
When polarized light is incident on a surface, it is often described in terms of perpendicular and parallel components. These are orthogonal to each other and the direction in which the light is propagating (Figure 1).
Labels and symbols applied to the perpendicular and parallel components can make it difficult to determine which is which. The table identifies, for a variety of different sets, which label refers to the perpendicular component and which to the parallel.
Labels | Notes |
|
---|---|---|
Perpendicular | Parallel | |
s | p | Senkrecht (s) is 'perpendicular' in German. Parallel begins with 'p.' |
TE | TM | TE: Transverse electric field. |
⊥ | // | ⊥ and // are symbols for perpendicular and parallel, respectively. |
σ | π | The Greek letters corresponding to s and p are σ and π, respectively. |
Sagittal | Tangential | A sagittal plane is a longitudinal plane that divides a body. |
The perpendicular and parallel directions are referenced to the plane of incidence, which is illustrated in Figure 1 for a beam reflecting from a surface. Together, the incident ray and the surface normal define the plane of incidence, and the incident and reflected rays are both contained in this plane. The perpendicular direction is normal to the plane of incidence, and the parallel direction is in the plane of incidence.
The electric fields of the perpendicular and parallel components oscillate in planes that are orthogonal to one another. The electric field of the perpendicular component oscillates in a plane perpendicular to the plane of incidence, while the electric field of the parallel component oscillated in the plane of incidence. The polarization of the light beam is the vector sum of the perpendicular and parallel components.
Normally Incident Light
Since a plane of incidence cannot be defined for normally incident light, this approach cannot be used to unambiguously define perpendicular and parallel components of light. There is limited need to make the distinction, since under conditions of normal incidence the reflectivity is the same for all components of light.
Date of Last Edit: Mar. 5, 2020
ECL, DFB, VHG-Stabilized, DBR, and Hybrid Single-Frequency Lasers
Click to Enlarge
Figure 1: ECL Lasers have a Grating Outside of the Gain Chip
A wide variety of applications require tunable single-frequency operation of a laser system. In the world of diode lasers, there are currently four main configurations to obtain a single-frequency output: external cavity laser (ECL), distributed feedback (DFB), volume holographic grating (VHG), and distributed Bragg reflector (DBR). All four are capable of single-frequency output through the utilization of grating feedback. In addition, an ECL can be combined with a fiber Bragg grating (FBG) to create a hybrid design. However, each type of laser uses a different grating feedback configuration, which influences performance characteristics such as output power, tuning range, and side mode suppression ratio (SMSR). We discuss below some of the main differences between these types of single-frequency diode lasers.
External Cavity Laser
The External Cavity Laser (ECL) is a versatile configuration that is compatible with most standard free space diode lasers. This means that the ECL can be used at a variety of wavelengths, dependent upon the internal laser diode gain element. A lens collimates the output of the diode, which is then incident upon a grating (see Figure 1). The grating provides optical feedback and is used to select the stabilized output wavelength. With proper optical design, the external cavity allows only a single longitudinal mode to lase, providing single-frequency laser output with high side mode suppression ratio (SMSR > 45 dB).
One of the main advantages of the ECL is that the relatively long cavity provides extremely narrow linewidths (several hundred kHz). Additionally, since it can incorporate a variety of laser diodes, it remains one of the few configurations that can provide narrow linewidth emission at blue or red wavelengths. The ECL can have a large tuning range (>100 nm) but is often prone to mode hops, which are very dependent on the ECL's mechanical design as well as the quality of the antireflection (AR) coating on the laser diode.
Click to Enlarge
Figure 2: DFB Lasers Have a Bragg Reflector Along the Length of the Active Gain Medium
Distributed Feedback Laser
The Distributed Feedback (DFB) Laser incorporates the grating within the laser diode structure itself (see Figure 2). This corrugated periodic structure coupled closely to the active region acts as a Bragg reflector, selecting a single longitudinal mode as the lasing mode. If the active region has enough gain at frequencies near the Bragg frequency, an end reflector is unnecessary, relying instead upon the Bragg reflector for all optical feedback and mode selection. Due to this “built-in” selection, a DFB can achieve single-frequency operation over broad temperature and current ranges. To aid in mode selection and improve manufacturing yield, DFB lasers often utilize a phase shift section within the diode structure as well.
The lasing wavelength for a DFB is approximately equal to the Bragg wavelength:
where λ is the wavelength, neff is the effective refractive index, and Λ is the grating period. By changing the effective index, the lasing wavelength can be tuned. This is accomplished through temperature and current tuning of the DFB.
The DFB has a relatively narrow tuning range: about 2 nm at 850 nm, about 4 nm at 1550 nm, or at least 1 cm-1 in the mid-IR (4.00 - 11.00 µm). However, over this tuning range, the DFB can achieve single-frequency operation, which means that this is a continuous tuning range without mode hops. Because of this feature, DFBs have become a popular and majority choice for real-world applications such as telecom and sensors. Since the cavity length of a DFB is rather short, the linewidths are typically from several hundred kHz to 10 MHz. Additionally, the close coupling between the grating structure and the active region results in lower maximum output power compared to ECL and DBR lasers. Thorlabs catalog offering of DFB lasers includes TO can, pigtailed TO can, and butterfly packaged versions for NIR wavelengths, as well as two-tab C-mount, D-mount, and HHL packages for the MIR.
Click to Enlarge
Figure 3: VHG Lasers have a Volume Holographic Grating Outside of the Active Gain Medium
Volume-Holographic-Grating-Stabilized Laser
A Volume-Holographic-Grating-(VHG)-Stabilized Laser also uses a Bragg reflector, but in this case a transmission grating is placed in front of the laser diode output (see Figure 3). Since the grating is not part of the laser diode structure, it can be thermally decoupled from the laser diode, improving the wavelength stability of the device. The grating typically consists of a piece of photorefractive material (typically glass) which has a periodic variation in the index of refraction. Only the wavelength of light that satisfies the Bragg condition for the grating is reflected back into the laser cavity, which results in a laser with extremely wavelength-stable emission. A VHG-Stabilized laser can produce output with a similar linewidth to a DFB laser at higher powers that is wavelength-locked over a wide range of currents and temperatures.
Click to Enlarge
Figure 4: DBR Lasers have a Bragg Reflector Outside of the Active Gain Medium
Distributed Bragg Reflector Laser
Similar to DFBs, Distributed Bragg Reflector (DBR) lasers incorporate an internal grating structure. However, whereas DFB lasers incorporate the grating structure continuously along the active region (gain region), DBR lasers place the grating structure(s) outside this region (see Figure 4). In general a DBR can incorporate various regions not typically found in a DFB that yield greater control and tuning range. For instance, a multiple-electrode DBR laser can include a phase-controlled region that allows the user to independently tune the phase apart from the grating period and laser diode current. When utilized together, the DBR can provide single-frequency operation over a broad tuning range. For example, high end sample-grating DBR lasers can have a tuning range as large as 30 - 40 nm. Unlike the DFB, the output is not mode hop free; hence, careful control of all inputs and temperature must be maintained.
In contrast to the complicated control structure for the multiple-electrode DBR, a simplified version of the DBR is engineered with just one electrode. This single-electrode DBR eliminates the complications of grating and phase control at the cost of tuning range. For this architecture type, the tuning range is similar to a DFB laser but will mode hop as a function of the applied current and temperature. Despite the disadvantage of mode hops, the single-electrode DBR does provide some advantages over its DFB cousin, namely higher output power because the grating is not continuous along the length of the device. Both DBR and DFB lasers have similar laser linewidths. Currently, Thorlabs offers only single-electrode DBR lasers.
Ultra-Low-Noise Hybrid Laser
Thorlabs Ultra-Low-Noise (ULN) Hybrid Lasers each consist of a single angled facet (SAF) gain chip coupled to an exceptionally long fiber Bragg grating (FBG). They are designed to create a laser cavity, similar to an ECL, through the length of fiber. This cavity provides the ULN hybrid laser with a very narrow line width on the order of 100 Hz and low relative intensity noise of -165 dBc/Hz (typical). The FBG reflects a portion of the light emitted from the gain medium while remaining thermally isolated from it. The grating period can be changed by introducing thermal stress to the fiber, allowing users to temperature tune the laser output while being able to independently stabilize the gain medium's temperature. Because the laser's configuration provides excellent low-noise performance, it is likely the laser will not be the limiting factor at low-noise levels. It is critical to monitor the laser's environment to limit external noise contributions like acoustic and seismic vibrations, as well as driving the laser with a low-noise current source.
Click to Enlarge
Figure 5: Thorlabs Hybrid Lasers have a Fiber Bragg Grating Coupled to the Active Gain Medium
Conclusion
ECL, DFB, VHG, DBR, and hybrid laser diodes provide single-frequency operation over their designed tuning range. The ECL can be designed for a larger selection of wavelengths than either the DFB or DBR. While prone to mode hops, it also provides the narrowest linewidth (several hundred kHz) of these three choices. In appropriately designed instruments, ECLs can also provide extremely broad tuning ranges (>100 nm).
The DFB laser is the most stable single-frequency, tunable laser configuration. It can provide mode-hop-free performance over its entire tuning range (<5 nm), making it one of the most popular forms of single-frequency laser for much of industry. It often has low output power due to inherent properties of the continuous grating feedback structure, but higher powers can be achieved with different packaging styles.
The VHG laser provides the most stable wavelength performance over a range of temperatures and currents and can provide higher powers than are typical in DFB lasers. This stability makes it excellent for use in OEM applications.
The single-electrode DBR laser provides similar linewidth and tuning range as the DFB (<5 nm). However, the single-electrode DBR will have periodic mode hops in its tuning curve.
Hybrid lasers can be used to achieve extremely low-noise signals. In order to take advantage of this characteristic, the laser must be isolated from unwanted noise sources, such as acoustic and seismic vibrations and drive current noise.
Posted Comments: | |
Chad Brubaker
 (posted 2024-10-04 11:23:13.313) Regarding the FPL1053P
I have a fully PM laser circuit with all elements having the show axis aligned to the key. Contacts are FC/APC and MTP/ UPC. I have verified connector face angle and ""Panda" angle. At the end of the circuit, I am splicing cleaved fiber ends (again, verifying pm angles - slow axis is still up) to a loopback device that requires TE polarization. However, the signal I get from the photodiode after the loopback indicates signal loss consistent with the orthogonal (TM) polarization state. My question is two parts
1. What is the polarization state of the FPL1053P?
2. What would I use to rotate this polarization state in the setup I have described? tdevkota
 (posted 2024-10-09 05:08:15.0) Thank you for reaching out to Thorlabs. The polarization of the FPL1053P is aligned to the slow axis of the polarization-maintaining fiber. You might want to consider using a paddle-based polarization controller to adjust the polarization state in a section of single mode fiber before the loopback. I have contacted you directly to discuss this in more detail. Sujeet Pani
 (posted 2024-02-07 12:40:29.33) Hi,
We are interested in puchasing the M9-808-0150 laser diode. The description says that the peak wavelength is supposed to be centered at 808nm but from the plot in the spec sheet shows the peak wavelength to be at around 802nm. Could you please let me know the expected spectrum of this diode and also if this diode's wavelength is tunable with change in temperature ? if yes, could you inform me what is the expected temperature coefficient ?
Best,
Sujeet jpolaris
 (posted 2024-02-13 02:08:27.0) Thank you for contacting Thorlabs. The CWL of M9-808-0150 can be anywhere within 803 nm - 813 nm, but it is typically 808 nm. It seems that the particular laser used when measuring the output spectrum shown in the spec sheet you are referring to happened to be on the shorter side of that range. Regarding the temperature coefficient, it will be ~0.3 nm/°C at 25 °C. Ju Geunhui
 (posted 2022-09-15 17:11:25.81) Hello, I'm Geunhui Ju from KITECH Research Institute in Korea. I want to purchase the DFB Butterfly type laser among NIR Laser Diodes, but I have a question for you. I'm currently looking for a DFB laser module with a center wavelength of 1490.98nm, but the butterfly type is only available up to 1456nm on the website. Is it possible to customize a specific wavelength or do you have a 1491nm DFB Butterfly type laser? jdelia
 (posted 2022-09-15 02:13:25.0) Thank you for contacting Thorlabs. We do have the capability of providing custom-wavelength versions of these diodes. I have reached out to you directly regarding the feasibility of this particular request. Drew G
 (posted 2021-02-27 11:23:17.797) Hello, I am interested in the BL976-PAG900 laser. Do you have any information on how long this laser could be run for continuously? My application requires a CW beam upwards of 30 minutes, some of which will be run at a fraction of the max power. Thank you, Drew YLohia
 (posted 2021-03-05 10:00:38.0) Hello Drew, thank you for contacting Thorlabs. This laser can be run indefinitely in CW mode with appropriate temperature control to prevent accelerated burn-out due to the high levels of heat generated. Yannik Zobus
 (posted 2020-09-24 16:09:50.503) Dear Torlabs Team,
can you tell me which PM-fibers are used in the pigtailed BL976-PAG series? Are they splice-compatible with PANDA PM980 from Corning?
With best regards,
Yannik YLohia
 (posted 2020-09-24 03:29:21.0) Hello Yannik, thank you for contacting Thorlabs. The fiber specs are given in the blue "info" icon next to the part numbers. Yes, these can be spliced together. Thanmay Menon
 (posted 2019-09-03 09:30:35.837) Hi,
I had a few questions regarding the laser diodes
(i) Are the laser diodes L785P090 and LD785-SH300 AR coated?
(ii) Is the diode LD785-SH300 suitable for being used in a ECL laser in Littrow configuration?
(iii) Is a 200mW 785nm laser diode in 9.0mm TO can with AR coating available?
Thank you YLohia
 (posted 2019-09-03 03:24:56.0) Hello, thank you for contacting Thorlabs. These diodes are not AR-coated -- they are both Fabry-Perot style laser diodes and an AR coating would prevent them from lasing. We do not recommend these for external cavity use as they already have a reflective coating on both facets. We will reach out to you directly to discuss the possibility of offering a custom solution. alexeyzaytsev
 (posted 2014-02-18 23:46:25.787) I am interested to use LP852-SF30 for pulse applications. Can you provide the typical rise time for such kind laser diode? Thank you. jlow
 (posted 2014-02-27 02:20:17.0) Response from Jeremy at Thorlabs: We do not have a specification of the rise time for this laser diode but it is estimated to be <1ns. user
 (posted 2013-07-18 11:16:20.02) I would like to know, what beamquality is to be expected from LPS-1550-FC. jlow
 (posted 2013-07-18 11:02:00.0) Response from Jeremy at Thorlabs: The laser diode inside the LPS-1550-FC is coupled to a single mode fiber so the beam quality will be very close to a Gaussian. Typically the M^2 value is <1.1. jlow
 (posted 2012-12-20 09:58:00.0) Response from Jeremy at Thorlabs: The SFL1550S has a central wavelength of 1550nm (±0.5nm). The tuning range is only about 3GHz. Therefore the SFL1550S would not be able to be tuned to emit at the wavelength ranges you are interested in. You could possibly use our tunable laser kit (TLK-L1550M) to cover those two wavelength ranges. We will get in contact with you directly to discuss about your applications. bslalit
 (posted 2012-12-06 03:21:28.88) Can SFL1550S diode laser be used to emit at wavelength between 1490 & 1530 and 1560 & 1580 ?? tcohen
 (posted 2012-10-30 10:57:00.0) Response from Tim at Thorlabs: From 25C to 60C a typical wavelength shift for L780P010 would be from ~780nm to ~788nm. The linewidth is 0.60nm. I will contact you with some representative data. david.n.hutch
 (posted 2012-10-26 18:53:00.313) Hi, I am also interested in the things that fas2 asked for: What is the spectral width of this LD? Do you have a spectrum you can send me? And can I please get a graph with the temperature-wavelength dependence? Thanks. bdada
 (posted 2011-09-22 20:37:00.0) Response from Buki at Thorlabs:
Thank you for using our Feedback Tool. Our Tech Support team in China will contact you directly. ddcheny
 (posted 2011-09-14 10:28:55.0) ???1.83um?1.89um?1.94um?2.12um??????,????????????(?PbS????)?????????(????),?????????(?????),???????!
??:???
??:????????????
??:13898526034
??:ddcheny@163.com
??:???????????????136? Thorlabs
 (posted 2010-06-30 18:20:08.0) Response from Javier at Thorlabs to fas2: the spectral width of the L780P010 is 0.60 nm. I will send you a graph with the temperature coefficient. fas2
 (posted 2010-06-28 20:05:07.0) What is the spectral width of this LD? Do you have a spectrum you can send me? Also, what is the temperature coefficient of the wavelength.
Thanks,
Fritz Javier
 (posted 2010-06-10 08:50:26.0) Response from Javier at Thorlabs to farzanehm (update): We actually can provide some information regarding the structure of the VCSEL diodes we offer. There are 37 mirror pairs in the bottom DBR and 27 pairs in the top DBR.
Thickness of top DBR is approximately 3.5µm. Thickness of bottom DBR is approximately 4.8µm. I hope this helps. Javier
 (posted 2010-06-09 10:40:13.0) Response from Javier at Thorlabs to farzanehm: we cannot disclosed this information, as details about the design of this VCSEL are considered proprietary information. I will contact you directly in case you have any further questions. farzanehm
 (posted 2010-06-08 15:29:37.0) I am using your VCSEL-850 in an experiment and am wondering if you can provide me with the structure of the VCSEL, e.g. the number of layers in the DBRs and their thicknesses. I need the information for modeling and simulation. Thank you. Adam
 (posted 2010-05-25 10:32:15.0) A response from Adam at Thorlabs to Ayser: We can provide you with a quotation. Our UK department will contact you shortly. ayser.hemed
 (posted 2010-05-25 09:39:44.0) I am a Ph.D student, working in optical feedback effect on DFB LD in 1310nm.
I want to pay a 3 devices from your company, part no. is: ML725B8F.
I HOPE TO RECEIVE AN OFFER WITH DELIVERY COST AND TIME REQUIRED TO RECEIVE IT FROM GLASGOW, UK.
Thanks Adam
 (posted 2010-04-26 23:30:00.0) A response from Adam at Thorlabs to Nizamov: I have not heard of this issue before, but it may not be related to the laser diode but to the laser driver and there is an inherent delay between the modulation input and the driving current from the LDC. One way that you can verify this is that you can monitor the LD current (there is a BNC on the back of the driver that should provide this signal) with respect to the modulation pulse. I will contact you directly with more information. nizamov.shawkat
 (posted 2010-04-26 10:46:16.0) We have 3 LDC205C and TED200C pairs, combined with TCLDM9. One setup utilizes 650 nm LD and another one uses 980 nm LD. For 980 nm L980P010 and L9805E2P5 laser diodes I experience unusually high modulation latency - about 5-10us front delay plus slow rise during several milliseconds afterwards. The red ones are OK. Replacing items doesnt help - Thorlabs IR LD seem to be just very slow. But we obtained and set another 980nm LD from another supplier - still the same, even 1 kHz square modulation results in highly distorted non-square and delayed light intensity modulation. What may be wrong? |
The rows shaded green below denote single-frequency lasers. |
Item # | Wavelength | Output Power | Operating Current | Operating Voltage | Beam Divergence | Laser Mode | Package | |
---|---|---|---|---|---|---|---|---|
Parallel | Perpendicular | |||||||
L375P70MLD | 375 nm | 70 mW | 110 mA | 5.4 V | 9° | 22.5° | Single Transverse Mode | Ø5.6 mm |
L404P400M | 404 nm | 400 mW | 370 mA | 4.9 V | 13° (1/e2) | 42° (1/e2) | Multimode | Ø5.6 mm |
LP405-SF10 | 405 nm | 10 mW | 50 mA | 5.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L405P20 | 405 nm | 20 mW | 38 mA | 4.8 V | 8.5° | 19° | Single Transverse Mode | Ø5.6 mm |
LP405C1 | 405 nm | 30 mW | 75 mA | 4.3 V | 1.4 mrad | 1.4 mrad | Single Transverse Mode | Ø3.8 mm, SM Pigtail with Collimator |
L405G2 | 405 nm | 35 mW | 50 mA | 4.9 V | 10° | 21° | Single Transverse Mode | Ø3.8 mm |
DL5146-101S | 405 nm | 40 mW | 70 mA | 5.2 V | 8° | 19° | Single Transverse Mode | Ø5.6 mm |
L405A1 | 405 nm | 175 mW (Min) | 150 mA | 5.0 V | 9° | 20° | Single Transverse Mode | Ø5.6 mm |
LP405-MF300 | 405 nm | 300 mW | 350 mA | 4.5 V | - | - | Multimode | Ø5.6 mm, MM Pigtail |
L405G1 | 405 nm | 1000 mW | 900 mA | 5.0 V | 13° | 45° | Multimode | Ø9 mm |
LP450-SF25 | 450 nm | 25 mW | 75 mA | 5.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L450G3 | 450 nm | 100 mW (Min) | 80 mA | 5.2 V | 8.4° | 21.5° | Single Transverse Mode | Ø3.8 mm |
L450G2 | 450 nm | 100 mW (Min) | 80 mA | 5.0 V | 8.4° | 21.5° | Single Transverse Mode | Ø5.6 mm |
L450P1600MM | 450 nm | 1600 mW | 1200 mA | 4.8 V | 7° | 19 - 27° | Multimode | Ø5.6 mm |
L473P100 | 473 nm | 100 mW | 120 mA | 5.7 V | 10 | 24 | Single Transverse Mode | Ø5.6 mm |
LP488-SF20 | 488 nm | 20 mW | 70 mA | 6.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP488-SF20G | 488 nm | 20 mW | 80 mA | 5.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L488P60 | 488 nm | 60 mW | 75 mA | 6.8 V | 7° | 23° | Single Transverse Mode | Ø5.6 mm |
LP515-SF3 | 515 nm | 3 mW | 50 mA | 5.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L515A1 | 515 nm | 10 mW | 50 mA | 5.4 V | 6.5° | 21° | Single Transverse Mode | Ø5.6 mm |
LP520-SF15A | 520 nm | 15 mW | 100 mA | 7.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP520-SF15 | 520 nm | 15 mW | 140 mA | 6.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L520A1 | 520 nm | 30 mW (Min) | 80 mA | 5.5 V | 8° | 22° | Single Transverse Mode | Ø5.6 mm |
PL520 | 520 nm | 50 mW | 250 mA | 7.0 V | 7° | 22° | Single Transverse Mode | Ø3.8 mm |
L520P50 | 520 nm | 45 mW | 150 mA | 7.0 V | 7° | 22° | Single Transverse Mode | Ø5.6 mm |
L520A2 | 520 nm | 110 mW (Min) | 225 mA | 5.9 V | 8° | 22° | Single Transverse Mode | Ø5.6 mm |
DJ532-10 | 532 nm | 10 mW | 220 mA | 1.9 V | 0.69° | 0.69° | Single Transverse Mode | Ø9.5 mm (non-standard) |
DJ532-40 | 532 nm | 40 mW | 330 mA | 1.9 V | 0.69° | 0.69° | Single Transverse Mode | Ø9.5 mm (non-standard) |
LP633-SF50 | 633 nm | 50 mW | 170 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL63163DG | 633 nm | 100 mW | 170 mA | 2.6 V | 8.5° | 18° | Single Transverse Mode | Ø5.6 mm |
LPS-635-FC | 635 nm | 2.5 mW | 70 mA | 2.2 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
LPS-PM635-FC | 635 nm | 2.5 mW | 60 mA | 2.2 V | - | - | Single Transverse Mode | Ø9.0 mm, PM Pigtail |
L635P5 | 635 nm | 5 mW | 30 mA | <2.7 V | 8° | 32° | Single Transverse Mode | Ø5.6 mm |
HL6312G | 635 nm | 5 mW | 50 mA | <2.7 V | 8° | 31° | Single Transverse Mode | Ø9 mm |
LPM-635-SMA | 635 nm | 8 mW | 50 mA | 2.2 V | - | - | Multimode | Ø9 mm, MM Pigtail |
LP635-SF8 | 635 nm | 8 mW | 60 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6320G | 635 nm | 10 mW | 60 mA | 2.2 V | 8° | 31° | Single Transverse Mode | Ø9 mm |
HL6322G | 635 nm | 15 mW | 75 mA | 2.4 V | 8° | 30° | Single Transverse Mode | Ø9 mm |
L637P5 | 637 nm | 5 mW | 20 mA | <2.4 V | 8° | 34° | Single Transverse Mode | Ø5.6 mm |
LP637-SF50 | 637 nm | 50 mW | 140 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP637-SF70 | 637 nm | 70 mW | 220 mA | 2.7 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL63142DG | 637 nm | 100 mW | 140 mA | 2.7 V | 8° | 18° | Single Transverse Mode | Ø5.6 mm |
HL63133DG | 637 nm | 170 mW | 250 mA | 2.8 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
HL6388MG | 637 nm | 250 mW | 340 mA | 2.3 V | 10° | 40° | Multimode | Ø5.6 mm |
L637G1 | 637 nm | 1200 mW | 1100 mA | 2.5 V | 10° | 32° | Multimode | Ø9 mm (non-standard) |
L638P040 | 638 nm | 40 mW | 92 mA | 2.4 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
L638P150 | 638 nm | 150 mW | 230 mA | 2.7 V | 9 | 18 | Single Transverse Mode | Ø3.8 mm |
L638P200 | 638 nm | 200 mW | 280 mA | 2.9 V | 8 | 14 | Single Transverse Mode | Ø5.6 mm |
L638P700M | 638 nm | 700 mW | 820 mA | 2.2 V | 9° | 35° | Multimode | Ø5.6 mm |
HL6358MG | 639 nm | 10 mW | 40 mA | 2.4 V | 8° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6323MG | 639 nm | 30 mW | 100 mA | 2.5 V | 8.5° | 30° | Single Transverse Mode | Ø5.6 mm |
HL6362MG | 640 nm | 40 mW | 90 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
LP642-SF20 | 642 nm | 20 mW | 90 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP642-PF20 | 642 nm | 20 mW | 110 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
HL6364DG | 642 nm | 60 mW | 120 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6366DG | 642 nm | 80 mW | 150 mA | 2.5 V | 10° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6385DG | 642 nm | 150 mW | 250 mA | 2.6 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
L650P007 | 650 nm | 7 mW | 28 mA | 2.2 V | 9° | 28° | Single Transverse Mode | Ø5.6 mm |
LPS-660-FC | 658 nm | 7.5 mW | 65 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP660-SF20 | 658 nm | 20 mW | 80 mA | 2.6 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPM-660-SMA | 658 nm | 22.5 mW | 65 mA | 2.6 V | - | - | Multimode | Ø5.6 mm, MM Pigtail |
HL6501MG | 658 nm | 30 mW | 75 mA | 2.6 V | 8.5° | 22° | Single Transverse Mode | Ø5.6 mm |
L658P040 | 658 nm | 40 mW | 75 mA | 2.2 V | 10° | 20° | Single Transverse Mode | Ø5.6 mm |
LP660-SF40 | 658 nm | 40 mW | 135 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP660-SF60 | 658 nm | 60 mW | 210 mA | 2.4 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6544FM | 660 nm | 50 mW | 115 mA | 2.3 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
LP660-SF50 | 660 nm | 50 mW | 140 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6545MG | 660 nm | 120 mW | 170 mA | 2.45 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
L660P120 | 660 nm | 120 mW | 175 mA | 2.5 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
L670VH1 | 670 nm | 1 mW | 2.5 mA | 2.6 V | 10° | 10° | Single Transverse Mode | TO-46 |
LPS-675-FC | 670 nm | 2.5 mW | 55 mA | 2.2 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
HL6748MG | 670 nm | 10 mW | 30 mA | 2.2 V | 8° | 25° | Single Transverse Mode | Ø5.6 mm |
HL6714G | 670 nm | 10 mW | 55 mA | <2.7 V | 8° | 22° | Single Transverse Mode | Ø9 mm |
HL6756MG | 670 nm | 15 mW | 35 mA | 2.3 V | 8° | 24° | Single Transverse Mode | Ø5.6 mm |
LP685-SF15 | 685 nm | 15 mW | 55 mA | 2.1 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL6750MG | 685 nm | 50 mW | 70 mA | 2.3 V | 9° | 21° | Single Transverse Mode | Ø5.6 mm |
HL6738MG | 690 nm | 30 mW | 85 mA | 2.5 V | 8.5° | 19° | Single Transverse Mode | Ø5.6 mm |
LP705-SF15 | 705 nm | 15 mW | 55 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL7001MG | 705 nm | 40 mW | 75 mA | 2.5 V | 9° | 18° | Single Transverse Mode | Ø5.6 mm |
LP730-SF15 | 730 nm | 15 mW | 70 mA | 2.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
HL7302MG | 730 nm | 40 mW | 75 mA | 2.5 V | 9° | 18° | Single Transverse Mode | Ø5.6 mm |
L760VH1 | 760 nm | 0.5 mW | 3 mA (Max) | 2.2 V | 12° | 12° | Single Frequency | TO-46 |
DBR760PN | 761 nm | 9 mW | 125 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L763VH1 | 763 nm | 0.5 mW | 3 mA (Max) | 2.0 V | 10° | 10° | Single Frequency | TO-46 |
DBR767PN | 767 nm | 23 mW | 220 mA | 1.87 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR770PN | 770 nm | 35 mW | 220 mA | 1.92 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L780P010 | 780 nm | 10 mW | 24 mA | 1.8 V | 8° | 30° | Single Transverse Mode | Ø5.6 mm |
DBR780PN | 780 nm | 45 mW | 250 mA | 1.9 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L785P5 | 785 nm | 5 mW | 28 mA | 1.9 V | 10° | 29° | Single Transverse Mode | Ø5.6 mm |
LPS-PM785-FC | 785 nm | 6.5 mW | 60 mA | - | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
LPS-785-FC | 785 nm | 10 mW | 65 mA | 1.85 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP785-SF20 | 785 nm | 20 mW | 85 mA | 1.9 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
DBR785S | 785 nm | 25 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR785P | 785 nm | 25 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L785P25 | 785 nm | 25 mW | 45 mA | 1.9 V | 8° | 30° | Single Transverse Mode | Ø5.6 mm |
FPV785S | 785 nm | 50 mW | 410 mA | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV785P | 785 nm | 50 mW | 410 mA | 2.1 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP785-SAV50 | 785 nm | 50 mW | 500 mA | 2.2 V | - | - | Single Frequency | Ø9 mm, SM Pigtail |
L785P090 | 785 nm | 90 mW | 125 mA | 2.0 V | 10° | 17° | Single Transverse Mode | Ø5.6 mm |
LP785-SF100 | 785 nm | 100 mW | 300 mA | 2.0 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
FPL785P | 785 nm | 200 mW | 500 mA | 2.1 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL785S-250 | 785 nm | 250 mW (Min) | 500 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD785-SEV300 | 785 nm | 300 mW | 500 mA (Max) | 2.0 V | 8° | 16° | Single Frequency | Ø9 mm |
LD785-SH300 | 785 nm | 300 mW | 400 mA | 2.0 V | 7° | 18° | Single Transverse Mode | Ø9 mm |
FPL785C | 785 nm | 300 mW | 400 mA | 2.0 V | 7° | 18° | Single Transverse Mode | 3 mm x 5 mm Submount |
LD785-SE400 | 785 nm | 400 mW | 550 mA | 2.0 V | 7° | 16° | Single Transverse Mode | Ø9 mm |
FPV785M | 785 nm | 600 mW | 1100 mA | 1.9 V | - | - | Multimode | Butterfly, MM Pigtail |
L795VH1 | 795 nm | 0.25 mW | 1.2 mA | 1.8 V | 20° | 12° | Single Frequency | TO-46 |
DBR795PN | 795 nm | 40 mW | 230 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR808PN | 808 nm | 42 mW | 250 mA | 2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP808-SA60 | 808 nm | 60 mW | 150 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-808-0150 | 808 nm | 150 mW | 180 mA | 1.9 V | 8° | 17° | Single Transverse Mode | Ø9 mm |
L808P200 | 808 nm | 200 mW | 260 mA | 2 V | 10° | 30° | Multimode | Ø5.6 mm |
FPL808P | 808 nm | 200 mW | 600 mA | 2.1 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL808S | 808 nm | 200 mW | 750 mA | 2.3 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
L808H1 | 808 nm | 300 mW | 400 mA | 2.1 V | 14° | 6° | Single Transverse Mode | Ø9 mm |
LD808-SE500 | 808 nm | 500 mW | 750 mA | 2.2 V | 7° | 14° | Single Transverse Mode | Ø9 mm |
LD808-SEV500 | 808 nm | 500 mW | 800 mA (Max) | 2.2 V | 8° | 14° | Single Frequency | Ø9 mm |
L808P500MM | 808 nm | 500 mW | 650 mA | 1.8 V | 12° | 30° | Multimode | Ø5.6 mm |
L808P1000MM | 808 nm | 1000 mW | 1100 mA | 2 V | 9° | 30° | Multimode | Ø9 mm |
DBR816PN | 816 nm | 45 mW | 250 mA | 1.95 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP820-SF80 | 820 nm | 80 mW | 230 mA | 2.3 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L820P100 | 820 nm | 100 mW | 145 mA | 2.1 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
L820P200 | 820 nm | 200 mW | 250 mA | 2.4 V | 9° | 17° | Single Transverse Mode | Ø5.6 mm |
DBR828PN | 828 nm | 24 mW | 250 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPS-830-FC | 830 nm | 10 mW | 120 mA | - | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPS-PM830-FC | 830 nm | 10 mW | 50 mA | 2.0 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
LP830-SF30 | 830 nm | 30 mW | 115 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
HL8338MG | 830 nm | 50 mW | 75 mA | 1.9 V | 9° | 22° | Single Transverse Mode | Ø5.6 mm |
L830H1 | 830 nm | 250 mW | 3 A (Max) | 2 V | 8° | 10° | Single Transverse Mode | Ø9 mm |
FPL830P | 830 nm | 300 mW | 900 mA | 2.22 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL830S | 830 nm | 350 mW | 900 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD830-SE650 | 830 nm | 650 mW | 900 mA | 2.3 V | 7° | 13° | Single Transverse Mode | Ø9 mm |
LD830-MA1W | 830 nm | 1 W | 2 A | 2.1 V | 7° | 24° | Multimode | Ø9 mm |
LD830-ME2W | 830 nm | 2 W | 3 A (Max) | 2.0 V | 8° | 21° | Multimode | Ø9 mm |
L840P200 | 840 nm | 200 mW | 255 mA | 2.4 V | 9 | 17 | Single Transverse Mode | Ø5.6 mm |
L850VH1 | 850 nm | 1 mW | 6 mA (Max) | 2 V | 12° | 12° | Single Frequency | TO-46 |
L850P010 | 850 nm | 10 mW | 50 mA | 2 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
L850P030 | 850 nm | 30 mW | 65 mA | 2 V | 8.5° | 30° | Single Transverse Mode | Ø5.6 mm |
FPV852S | 852 nm | 20 mW | 400 mA | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV852P | 852 nm | 20 mW | 400 mA | 2.2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR852PN | 852 nm | 24 mW | 300 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP852-SF30 | 852 nm | 30 mW | 115 mA | 1.9 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L852P50 | 852 nm | 50 mW | 75 mA | 1.9 V | 9° | 22° | Single Transverse Mode | Ø5.6 mm |
LP852-SF60 | 852 nm | 60 mW | 150 mA | 2.0 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
L852P100 | 852 nm | 100 mW | 120 mA | 1.9 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L852P150 | 852 nm | 150 mW | 170 mA | 1.9 V | 8° | 18° | Single Transverse Mode | Ø9 mm |
L852SEV1 | 852 nm | 270 mW | 400 mA (Max) | 2.0 V | 9° | 12° | Single Frequency | Ø9 mm |
L852H1 | 852 nm | 300 mW | 415 mA (Max) | 2 V | 7° | 15° | Single Transverse Mode | Ø9 mm |
FPL852P | 852 nm | 300 mW | 900 mA | 2.35 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL852S | 852 nm | 350 mW | 900 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
LD852-SE600 | 852 nm | 600 mW | 950 mA | 2.3 V | 7° (1/e2) | 13° (1/e2) | Single Transverse Mode | Ø9 mm |
LD852-SEV600 | 852 nm | 600 mW | 1050 mA (Max) | 2.2 V | 8° | 13° (1/e2) | Single Frequency | Ø9 mm |
LP880-SF3 | 880 nm | 3 mW | 25 mA | 2.2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L880P010 | 880 nm | 10 mW | 30 mA | 2.0 V | 12° | 37° | Single Transverse Mode | Ø5.6 mm |
L895VH1 | 895 nm | 0.2 mW | 1.4 mA | 1.6 V | 20° | 13° | Single Frequency | TO-46 |
DBR895PN | 895 nm | 12 mW | 300 mA | 2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP904-SF3 | 904 nm | 3 mW | 30 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L904P010 | 904 nm | 10 mW | 50 mA | 2.0 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
LP915-SF40 | 915 nm | 40 mW | 130 mA | 1.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
DBR935PN | 935 nm | 13 mW | 300 mA | 1.75 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LP940-SF30 | 940 nm | 30 mW | 90 mA | 1.5 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-940-0200 | 940 nm | 200 mW | 270 mA | 1.9 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L960H1 | 960 nm | 250 mW | 400 mA | 2.1 V | 11° | 12° | Single Transverse Mode | Ø9 mm |
FPV976S | 976 nm | 30 mW | 400 mA (Max) | 2.2 V | - | - | Single Frequency | Butterfly, SM Pigtail |
FPV976P | 976 nm | 30 mW | 400 mA (Max) | 2.2 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR976PN | 976 nm | 33 mW | 450 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L976SEV1 | 976 nm | 270 mW | 400 mA (Max) | 2.0 V | 9° | 12° | Single Frequency | Ø9 mm |
BL976-SAG3 | 976 nm | 300 mW | 470 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
BL976-PAG500 | 976 nm | 500 mW | 830 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL976-PAG700 | 976 nm | 700 mW | 1090 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL976-PAG900 | 976 nm | 900 mW | 1480 mA | 2.5 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L980P010 | 980 nm | 10 mW | 25 mA | 2 V | 10° | 30° | Single Transverse Mode | Ø5.6 mm |
LP980-SF15 | 980 nm | 15 mW | 70 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
L980P030 | 980 nm | 30 mW | 50 mA | 1.5 V | 10° | 35° | Single Transverse Mode | Ø5.6 mm |
L980P100A | 980 nm | 100 mW | 150 mA | 1.6 V | 6° | 32° | Multimode | Ø5.6 mm |
LP980-SA60 | 980 nm | 60 mW | 230 mA | 2.0 V | - | - | Single Transverse Mode | Ø9.0 mm, SM Pigtail |
L980H1 | 980 nm | 200 mW | 300 mA (Max) | 2.0 V | 8° | 13° | Single Transverse Mode | Ø9 mm |
L980P200 | 980 nm | 200 mW | 300 mA | 1.5 V | 6° | 30° | Multimode | Ø5.6 mm |
DBR1060SN | 1060 nm | 130 mW | 650 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR1060PN | 1060 nm | 130 mW | 650 mA | 1.8 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR1064S | 1064 nm | 40 mW | 150 mA | 2.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DBR1064P | 1064 nm | 40 mW | 150 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DBR1064PN | 1064 nm | 110 mW | 550 mA | 2.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPS-1060-FC | 1064 nm | 50 mW | 220 mA | 1.4 V | - | - | Single Transverse Mode | Ø9 mm, SM Pigtail |
M9-A64-0200 | 1064 nm | 200 mW | 280 mA | 1.7 V | 8° | 28° | Single Transverse Mode | Ø9 mm |
L1064H1 | 1064 nm | 300 mW | 700 mA | 1.92 V | 7.6° | 13.5° | Single Transverse Mode | Ø9 mm |
L1064H2 | 1064 nm | 450 mW | 1100 mA | 1.92 V | 7.6° | 13.5° | Single Transverse Mode | Ø9 mm |
DBR1083PN | 1083 nm | 100 mW | 500 mA | 1.75 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L1270P5DFB | 1270 nm | 5 mW | 15 mA | 1.1 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1290P5DFB | 1290 nm | 5 mW | 16 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LP1310-SAD2 | 1310 nm | 2.0 mW | 40 mA | 1.1 V | - | - | Single Frequency | Ø5.6 mm, SM Pigtail |
LP1310-PAD2 | 1310 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, PM Pigtail |
LPS-PM1310-FC | 1310 nm | 2.5 mW | 20 mA | 1.1 V | - | - | Single Transverse Mode | Ø5.6 mm, PM Pigtail |
L1310P5DFB | 1310 nm | 5 mW | 16 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LPSC-1310-FC | 1310 nm | 50 mW | 350 mA | 2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1053S | 1310 nm | 130 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1053P | 1310 nm | 130 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL1053T | 1310 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
FPL1053C | 1310 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 27° | Single Transverse Mode | Chip on Submount |
L1310G1 | 1310 nm | 2000 mW | 5 A | 1.5 V | 7° | 24° | Multimode | Ø9 mm |
L1330P5DFB | 1330 nm | 5 mW | 14 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1370G1 | 1370 nm | 2000 mW | 5 A | 1.4 V | 6° | 22° | Multimode | Ø9 mm |
BL1425-PAG500 | 1425 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
BL1436-PAG500 | 1436 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L1450G1 | 1450 nm | 2000 mW | 5 A | 1.4 V | 7° | 22° | Multimode | Ø9 mm |
BL1456-PAG500 | 1456 nm | 500 mW | 1600 mA | 2.0 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
L1470P5DFB | 1470 nm | 5 mW | 19 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1480G1 | 1480 nm | 2000 mW | 5 A | 1.6 V | 6° | 20° | Multimode | Ø9 mm |
L1490P5DFB | 1490 nm | 5 mW | 24 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1510P5DFB | 1510 nm | 5 mW | 20 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1530P5DFB | 1530 nm | 5 mW | 21 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
LPS-1550-FC | 1550 nm | 1.5 mW | 30 mA | 1.0 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LPS-PM1550-FC | 1550 nm | 1.5 mW | 30 mA | 1.1 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
LP1550-SAD2 | 1550 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, SM Pigtail |
LP1550-PAD2 | 1550 nm | 2.0 mW | 40 mA | 1.0 V | - | - | Single Frequency | Ø5.6 mm, PM Pigtail |
L1550P5DFB | 1550 nm | 5 mW | 20 mA | 1.0 V | 8° | 10° | Single Frequency | Ø5.6 mm |
ML925B45F | 1550 nm | 5 mW | 30 mA | 1.1 V | 25° | 30° | Single Transverse Mode | Ø5.6 mm |
SFL1550S | 1550 nm | 40 mW | 300 mA | 1.5 V | - | - | Single Frequency | Butterfly, SM Pigtail |
SFL1550P | 1550 nm | 40 mW | 300 mA | 1.5 V | - | - | Single Frequency | Butterfly, PM Pigtail |
LPSC-1550-FC | 1550 nm | 50 mW | 250 mA | 2 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1009S | 1550 nm | 100 mW | 400 mA | 1.4 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1009P | 1550 nm | 100 mW | 400 mA | 1.4 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
ULN15PC | 1550 nm | 140 mW | 650 mA | 3.0 V | - | - | Single Frequency | Extended Butterfly, PM Pigtail |
ULN15PT | 1550 nm | 140 mW | 650 mA | 3.0 V | - | - | Single Frequency | Extended Butterfly, PM Pigtail |
FPL1001C | 1550 nm | 150 mW | 400 mA | 1.4 V | 18° | 31° | Single Transverse Mode | Chip on Submount |
FPL1055T | 1550 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
FPL1055C | 1550 nm | 300 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
L1550G1 | 1550 nm | 1700 mW | 5 A | 1.5 V | 7° | 28° | Multimode | Ø9 mm |
DFB1550 | 1555 nm | 100 mW (Min) | 1000 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1550N | 1555 nm | 130 mW (Min) | 1800 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1550P | 1555 nm | 100 mW (Min) | 1000 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DFB1550PN | 1555 nm | 130 mW (Min) | 1800 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
L1570P5DFB | 1570 nm | 5 mW | 25 mA | 1.0 V | 7° | 9° | Single Frequency | Ø5.6 mm |
L1575G1 | 1575 nm | 1700 mW | 5 A | 1.5 V | 6° | 28° | Multimode | Ø9 mm |
LPSC-1625-FC | 1625 nm | 50 mW | 350 mA | 1.5 V | - | - | Single Transverse Mode | Ø5.6 mm, SM Pigtail |
FPL1054S | 1625 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1054P | 1625 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
FPL1054C | 1625 nm | 250 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
FPL1054T | 1625 nm | 200 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
DFB1642 | 1642 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1642P | 1642 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
DFB1646 | 1646 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1646P | 1646 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1059S | 1650 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL1059P | 1650 nm | 80 mW | 400 mA | 1.7 V | - | - | Single Transverse Mode | Butterfly, PM Pigtail |
DFB1650 | 1650 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1650P | 1650 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1059C | 1650 nm | 225 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Chip on Submount |
FPL1059T | 1650 nm | 225 mW (Pulsed) | 750 mA | 2 V | 15° | 28° | Single Transverse Mode | Ø5.6 mm |
DFB1654 | 1654 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, SM Pigtail |
DFB1654P | 1654 nm | 80 mW | 900 mA (Max) | 3.0 V | - | - | Single Frequency | Butterfly, PM Pigtail |
FPL1940S | 1940 nm | 15 mW | 400 mA | 2 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL2000S | 2 µm | 15 mW | 400 mA | 2 V | - | - | Single Transverse Mode | Butterfly, SM Pigtail |
FPL2000C | 2 µm | 30 mW | 400 mA | 5.2 V | 8° | 19° | Single Transverse Mode | Chip on Submount |
ID3250HHLH | 3.00 - 3.50 µm (DFB) | 5 mW | 400 mA (Max) | 5 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
IF3400T1 | 3.40 µm (FP) | 30 mW | 300 mA | 4 V | 40° | 70° | Single Transverse Mode | Ø9 mm |
ID3750HHLH | 3.50 - 4.00 µm (DFB) | 5 mW | 300 mA (Max) | 5 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF3850T1 | 3.85 µm (FP) | 200 mW | 600 mA (Max) | 13.5 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF3850HHLH | 3.85 µm (FP) | 320 mW (Min) | 1100 mA (Max) | 13 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QF4040HHLH | 4.05 µm (FP) | 320 mW (Min) | 1100 mA (Max) | 13 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD4500CM1 | 4.00 - 5.00 µm (DFB) | 40 mW | 500 mA (Max) | 10.5 V | 30° | 40° | Single Frequency | Two-Tab C-Mount |
QD4500HHLH | 4.00 - 5.00 µm (DFB) | 80 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4050T2 | 4.05 µm (FP) | 70 mW | 250 mA | 12 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4050C2 | 4.05 µm (FP) | 300 mW | 400 mA | 12 V | 30 | 42 | Single Transverse Mode | Two-Tab C-Mount |
QF4050T1 | 4.05 µm (FP) | 300 mW | 600 mA (Max) | 12.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4050D2 | 4.05 µm (FP) | 800 mW | 750 mA | 13 V | 30° | 40° | Single Transverse Mode | D-Mount |
QF4050D3 | 4.05 µm (FP) | 1200 mW | 1000 mA | 13 V | 30° | 40° | Single Transverse Mode | D-Mount |
QD4472HH | 4.472 µm (DFB) | 85 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4600T2 | 4.60 µm (FP) | 200 mW | 500 mA (Max) | 13.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600T1 | 4.60 µm (FP) | 400 mW | 800 mA (Max) | 12.0 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600C2 | 4.60 µm (FP) | 600 mW | 600 mA | 12 V | 30° | 42° | Single Transverse Mode | Two-Tab C-Mount |
QF4600T3 | 4.60 µm (FP) | 1000 mW | 800 mA (Max) | 13 V | 30° | 40° | Single Transverse Mode | Ø9 mm |
QF4600D4 | 4.60 µm (FP) | 2500 mW | 1800 mA | 12.5 V | 40° | 30° | Single Transverse Mode | D-Mount |
QF4600D3 | 4.60 µm (FP) | 3000 mW | 1700 mA | 12.5 V | 30° | 40° | Single Transverse Mode | D-Mount |
QD4602HH | 4.602 µm (DFB) | 150 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF4650HHLH | 4.65 µm (FP) | 1500 mW (Min) | 1100 mA | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD5500CM1 | 5.00 - 6.00 µm (DFB) | 40 mW | 700 mA (Max) | 9.5 V | 30° | 45° | Single Frequency | Two-Tab C-Mount |
QD5500HHLH | 5.00 - 6.00 µm (DFB) | 150 mW | 500 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD5250C2 | 5.20 - 5.30 µm (DFB) | 60 mW | 700 mA (Max) | 9.5 V | 30° | 45° | Single Frequency | Two-Tab C-Mount |
QD5263HH | 5.263 µm (DFB) | 130 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD6500CM1 | 6.00 - 7.00 µm (DFB) | 40 mW | 650 mA (Max) | 10 V | 35° | 50° | Single Frequency | Two-Tab C-Mount |
QD6500HHLH | 6.00 - 7.00 µm (DFB) | 80 mW | 600 mA (Max) | 11 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD6134HH | 6.134 µm (DFB) | 50 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7500CM1 | 7.00 - 8.00 µm (DFB) | 40 mW | 600 mA (Max) | 10 V | 40° | 50° | Single Frequency | Two-Tab C-Mount |
QD7500HHLH | 7.00 - 8.00 µm (DFB) | 50 mW | 700 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7500DM1 | 7.00 - 8.00 µm (DFB) | 100 mW | 600 mA (Max) | 11.5 V | 40° | 55° | Single Frequency | D-Mount |
QD7416HH | 7.416 µm (DFB) | 100 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD7716HH | 7.716 µm (DFB) | 30 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF7900HB | 7.9 µm (FP) | 700 mW | 1600 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD7901HH | 7.901 µm (DFB) | 50 mW | 700 mA (Max) | 10 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD8050CM1 | 8.00 - 8.10 µm (DFB) | 100 mW | 1000 mA (Max) | 9.5 V | 55° | 70° | Single Frequency | Two-Tab C-Mount |
QD8500CM1 | 8.00 - 9.00 µm (DFB) | 100 mW | 900 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD8500HHLH | 8.00 - 9.00 µm (DFB) | 100 mW | 600 mA (Max) | 10.2 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF8450C2 | 8.45 µm (FP) | 300 mW | 750 mA | 9 V | 40° | 60° | Single Transverse Mode | Two-Tab C-Mount |
QF8500HB | 8.5 µm (FP) | 500 mW | 2000 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QD8650CM1 | 8.60 - 8.70 µm (DFB) | 50 mW | 900 mA (Max) | 9.5 V | 55° | 70° | Single Frequency | Two-Tab C-Mount |
QD8912HH | 8.912 µm (DFB) | 150 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD9500CM1 | 9.00 - 10.00 µm (DFB) | 60 mW | 800 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD9500HHLH | 9.00 - 10.00 µm (DFB) | 100 mW | 600 mA (Max) | 10.2 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD9062HH | 9.062 µm (DFB) | 130 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QF9150C2 | 9.15 µm (FP) | 200 mW | 850 mA | 11 V | 40° | 60° | Single Transverse Mode | Two-Tab C-Mount |
QF9200HB | 9.2 µm (FP) | 250 mW | 2000 mA (Max) | 9 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Transverse Mode | Horizontal HHL |
QF9500T1 | 9.5 µm (FP) | 300 mW | 550 mA | 12 V | 40° | 55° | Single Transverse Mode | Ø9 mm |
QD9550C2 | 9.50 - 9.60 µm (DFB) | 60 mW | 800 mA (Max) | 9.5 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QF9550CM1 | 9.55 µm (FP) | 80 mW | 1500 mA | 7.8 V | 35° | 60° | Single Transverse Mode | Two-Tab C-Mount |
QD9697HH | 9.697 µm (DFB) | 80 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10500CM1 | 10.00 - 11.00 µm (DFB) | 40 mW | 600 mA (Max) | 10 V | 40° | 55° | Single Frequency | Two-Tab C-Mount |
QD10500HHLH | 10.00 - 11.00 µm (DFB) | 50 mW | 700 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10530HH | 10.530 µm (DFB) | 50 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10549HH | 10.549 µm (DFB) | 60 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
QD10622HH | 10.622 µm (DFB) | 60 mW | 1000 mA (Max) | 12 V | 6 mrad (0.34°) | 6 mrad (0.34°) | Single Frequency | Horizontal HHL |
The rows shaded green above denote single-frequency lasers. |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
LP705-SF15 | 705 nm | 15 mW | 55 mA / 80 mA | Ø5.6 mm, SM Pigtail | C | Yes | S7060Rc | Yes | Single Transverse Mode | |
HL7001MG | 705 nm | 40 mW | 75 mA / 100 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
LP730-SF15 | 730 nm | 15 mW | 70 mA / 100 mA | Ø5.6 mm, SM Pigtail | A | Yes | S7060Rc | Yes | Single Transverse Mode | |
HL7302MG | 730 nm | 40 mW | 75 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
L760VH1 | 760 nm | 0.5 mW | 3 mA (Max) | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyd | |
DBR760PN | 761 nm | 9 mW | 125 mA (Typ.) | Butterfly, PM Pigtaile | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
L763VH1 | 763 nm | 0.5 mW | 3 mA (Max) | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyd | |
DBR767PN | 767 nm | 23 mW | 220 mA (Typ.) | Butterfly, PM Pigtaile | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
DBR770PN | 770 nm | 35 mW | 220 mA (Typ.) | Butterfly, PM Pigtaile | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L780P010 | 780 nm | 10 mW | 24 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
DBR780PN | 780 nm | 45 mW | 250 mA (Typ.) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
L785P5 | 785 nm | 5 mW | 28 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
LPS-PM785-FC | 785 nm | 6.5 mW | 60 mA / 90 mA | Ø5.6 mm, PM Pigtaild | A | Yes | S7060Re | Yes | Single Transverse Mode | |
LPS-785-FC | 785 nm | 10 mW | 65 mA / 90 mA | Ø5.6 mm, SM Pigtail | A | Yes | S7060Re | Yes | Single Transverse Mode | |
LP785-SF20 | 785 nm | 20 mW | 85 mA / 120 mA | Ø5.6 mm, SM Pigtail | A | Yes | S7060Re | Yes | Single Transverse Mode | |
DBR785S | 785 nm | 22 mW | 230 mA / 250 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
DBR785P | 785 nm | 22 mW | 230 mA / 250 mA | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
L785P25 | 785 nm | 25 mW | 45 mA / 60 mA | Ø5.6 mm | B | Yes | S7060R | No | Single Transverse Mode | |
LP785-SAV50 | 785 nm | 50 mW | 500 mA (Max)f | Ø9 mm, SM Pigtail | E | No | S8060 or S8060-4 |
Yes | Single Frequencyd | |
FPV785S | 785 nm | 50 mW | 410 mA (Max)f | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
FPV785P | 785 nm | 50 mW | 410 mA (Max)f | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
L785P090 | 785 nm | 90 mW | 125 mA / 165 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
LP785-SF100 | 785 nm | 100 mW | 300 mA / 450 mA | Ø9 mm, SM Pigtail | H | No | S8060 or S8060-4 |
Yes | Single Transverse Mode | |
FPL785P | 785 nm | 200 mW | 500 mA / 550 mA | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode |
|
FPL785S-250 | 785 nm | 250 mW (Min) |
500 mA / 550 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode | |
LD785-SEV300g | 785 nm | 300 mW | 500 mA (Max)f | Ø9 mmh | E | No | S8060 or S8060-4 |
Yes | Single Frequencyd | |
LD785-SH030i | 785 nm | 300 mW | 400 mA / 450 mA | Ø9 mm | H | Yes | S8060 or S8060-4 |
No | Single Transverse Mode | |
FPL785C | 785 nm | 300 mW | 400 mA / 450 mA | 3 mm x 5 mm Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
LD785-SE400i | 785 nm | 400 mW | 550 mA / 600 mA | Ø9 mm | E | No | S8060 or S8060-4 |
Yes | Single Transverse Mode | |
FPV785M | 785 nm | 600 mW | 1100 mA / 1500 mA | Butterfly, MM Pigtail | 14-Pin Butterfly | Yes | - | No | Multimode | |
L795VH1 | 795 nm | 0.25 mW | 1.2 mA / 1.5 mA | TO-46 | H | No | S8060 or S8060-4 |
No | Single Frequencyd | |
DBR795PN | 795 nm | 40 mW | 230 mA (Typ.) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
DBR808PN | 808 nm | 42 mW | 250 mA (Typ.) | Butterfly, PM Pigtailc | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
LP808-SA60 | 808 nm | 60 mW | 150 mA / 220 mA | Ø9 mm, SM Pigtail | B | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
M9-808-0150 | 808 nm | 150 mW | 180 mA / 220 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode | |
L808P200 | 808 nm | 200 mW | 260 mA / 300 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode | |
FPL808P | 808 nm | 200 mW | 600 mA / 650 mA | Butterfly, PM Pigtailc | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
FPL808S | 808 nm | 250 mW | 700 mA / 750 mA | Butterfly, SM Pigtail | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
L808H1 | 808 nm | 300 mW | 400 mA / 450 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
L808P500MM | 808 nm | 500 mW | 650 mA / 700 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode | |
LD808-SE500e | 808 nm | 500 mW | 750 mA / 800 mA | Ø9 mmf | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
LD808-SEV500g | 808 nm | 500 mW | 800 mA (Max)h | Ø9 mmf | E | No | S8060 or S8060-4 | Yes | Single Frequencyd | |
L808P1000MM | 808 nm | 1000 mW | 1100 mA / 1500 mA | Ø9 mm | E | No | S8060 or S8060-4 | No | Multimode |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
DBR816PN | 816 nm | 45 mW | 250 mA (Typ.) | Butterfly, PM Pigtailc | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
LP820-SF80 | 820 nm | 80 mW | 230 mA / 400 mA | Ø5.6 mm, SM Pigtail | C | Yes | S7060Rd | Yes | Single Transverse Mode | |
L820P100 | 820 nm | 100 mW | 145 mA / 210 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
L820P200 | 820 nm | 200 mW | 250 mA / 340 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
DBR828PN | 828 nm | 24 mW | 250 mA (Typ.) | Butterfly, PM Pigtailc | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
LPS-830-FC | 830 nm | 10 mW | 50 mA / 80 mA | Ø5.6 mm, SM Pigtail | C | Yes | S7060Re | Yes | Single Transverse Mode | |
LPS-PM830-FC | 830 nm | 10 mW | 50 mA / 90 mA | Ø5.6 mm, PM Pigtailc | C | Yes | S7060Re | Yes | Single Transverse Mode | |
LP830-SF30 | 830 nm | 30 mW | 115 mA / 160 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
HL8338MG | 830 nm | 50 mW | 75 mA / 100 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
L830H1 | 830 nm | 250 mW | 400 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
FPL830P | 830 nm | 300 mW | 900 mA / 1000 mA | Butterfly, PM Pigtailc | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
FPL830S | 830 nm | 350 mW | 900 mA / 950 mA | Butterfly, SM Pigtail | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
LD830-SE650f | 830 nm | 650 mW | 900 mA / 1050 mA | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
LD830-MA1W | 830 nm | 1000 mW | 2000 mA (Max) | Ø9 mm | A | Yes | S8060 or S8060-4 | Yes | Multimode | |
LD830-ME2W | 830 nm | 2000 mW | 3000 mA (Max) | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Multimode |
Note: The row shaded green below denotes single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L840P200 | 840 nm | 200 mW | 255 mA / 340 mA | Ø5.6 mm | C | Yes | S7060R | No | Single Transverse Mode | |
L850VH1 | 850 nm | 1 mW | 6 mA (Max) | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyc | |
L850P010 | 850 nm | 10 mW | 50 mA / 70 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
L850P030 | 850 nm | 30 mW | 65 mA / 95 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
FPV852S | 852 nm | 20 mW | 400 mA (Max)c | Butterfly, SM Pigtail | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
FPV852P | 852 nm | 20 mW | 400 mA (Max)c | Butterfly, PM Pigtaile | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
DBR852PN | 852 nm | 24 mW | 300 mA (Max)c | Butterfly, PM Pigtaile | 14 Pin, Type 1 | Yes | - | Yes | Single Frequencyd | |
LP852-SF30 | 852 nm | 30 mW | 115 mA / 160 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
L852P50 | 852 nm | 50 mW | 75 mA / 100 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
LP852-SF60 | 852 nm | 60 mW | 150 mA / 220 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
L852P100 | 852 nm | 100 mW | 120 mA / 170 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode | |
L852P150 | 852 nm | 150 mW | 170 mA / 220 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode | |
L852SEV1f | 852 nm | 270 mW | 350 mA / 400 mAc | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Single Frequencyd | |
L852H1 | 852 nm | 300 mW | 415 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
FPL852P | 852 nm | 300 mW | 900 mA / 1000 mA | Butterfly, PM Pigtail | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
FPL852S | 852 nm | 350 mW | 900 mA / 950 mA | Butterfly, SM Pigtail | 14 Pin, Type 1 | Yes | - | Yes | Single Transverse Mode | |
LD852-SE600h | 852 nm | 600 mW | 950 mA / 1050 mA | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
LD852-SEV600f | 852 nm | 600 mW | 1050 mA (Max)c | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Single Frequencyd |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
LP880-SF3 | 880 nm | 3 mW | 25 mA / 40 mA | Ø5.6 mm, SM Pigtail | A | Yes | S7060Rc | Yes | Single Transverse Mode | |
L880P010 | 880 nm | 10 mW | 30 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
L895VH1 | 895 nm | 0.2 mW | 1.4 mA / 2.0 mA | TO-46 | H | No | S8060 or S8060-4 | No | Single Frequencyd | |
DBR895PN | 895 nm | 12 mW | 300 mA (Typ.) | Butterfly, PM Pigtaile | 14-Pin Type 1 | Yes | - | Yes | Single Frequencyd |
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
LP904-SF3 | 904 nm | 3 mW | 30 mA / 60 mA | Ø5.6 mm, SM Pigtail | A | Yes | S7060R | Yes | Single Transverse Mode | |
L904P010 | 904 nm | 10 mW | 50 mA / 70 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
LP915-SF40 | 915 nm | 40 mW | 130 mA / 200 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
DBR935PN | 935 nm | 13 mW | 300 mA (Typical) | Butterfly, PM Pigtailc | 14-Pin Type 1 | Yes | - | Yes | Single Frequencyd | |
LP940-SF30 | 940 nm | 30 mW | 90 mA / 120 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
M9-940-0200 | 940 nm | 200 mW | 270 mA / 320 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode | |
L960H1 | 960 nm | 250 mW | 400 mA / 430 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
FPV976S | 976 nm | 30 mW | 400 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
FPV976P | 976 nm | 30 mW | 400 mA (Max) | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
DBR976PN | 976 nm | 33 mW | 450 mA (Typ.) | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
L976SEV1e | 976 nm | 270 mW | 350 mA / 400 mAf | Ø9 mmg | E | No | S8060 or S8060-4 | Yes | Single Frequencyc | |
BL976-SAG3 | 976 nm | 300 mW | 470 mA / 520 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode | |
BL976-PAG500 | 976 nm | 500 mW | 830 mA / 920 mA | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode | |
BL976-PAG700 | 976 nm | 700 mW | 1090 mA / 1150 mA | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode | |
BL976-PAG900 | 976 nm | 900 mW | 1480 mA / 1630 mA | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Transverse Mode |
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L980P010 | 980 nm | 10 mW | 25 mA / 40 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
LP980-SF15 | 980 nm | 15 mW | 70 mA / 90 mA | Ø5.6 mm, SM Pigtail | E | No | S7060Rc | Yes | Single Transverse Mode | |
L980P030 | 980 nm | 30 mW | 100 mA / 150 mA | Ø5.6 mm | A | Yes | S7060R | No | Single Transverse Mode | |
L980P100A | 980 nm | 100 mW | 150 mA / 190 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode | |
LP980-SA60 | 980 nm | 60 mW | 230 mA / 400 mA | Ø9.0 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
L980H1 | 980 nm | 200 mW | 300 mA (Max) | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Moded | |
L980P200 | 980 nm | 200 mW | 300 mA / 400 mA | Ø5.6 mm | A | Yes | S7060R | No | Multimode |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
DBR1060SN | 1060 nm | 130 mW | 650 mA (Typ.) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
DBR1060PN | 1060 nm | 130 mW | 650 mA (Typ.) | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
DBR1064S | 1064 nm | 40 mW | 150 mA / 200 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
DBR1064P | 1064 nm | 40 mW | 150 mA / 200 mA | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
LPS-1060-FC | 1064 nm | 50 mW | 220 mA / 300 mA | Ø9 mm, SM Pigtail | A | Yes | S8060 or S8060-4 | Yes | Single Transverse Mode | |
DBR1064PN | 1064 nm | 110 mW | 550 mA (Typ.) | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc | |
M9-A64-0200 | 1064 nm | 200 mW | 280 mA / 350 mA | Ø9 mm | A | Yes | S8060 or S8060-4 | No | Single Transverse Mode | |
L1064H1 | 1064 nm | 300 mW | 700 mA / 900 mA | Ø9 mm | H | No | S8060 or S8060-4 | Yes | Single Transverse Mode | |
L1064H2 | 1064 nm | 450 mW | 1100 mA / 1200 mA | Ø9 mm | E | No | S8060 or S8060-4 | No | Single Transverse Mode | |
DBR1083PN | 1083 nm | 100 mW | 500 mA (Typ.) | Butterfly, PM Pigtaild | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyc |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
L1270P5DFBc | 1270 nm | 5 mW | 15 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1290P5DFBc | 1290 nm | 5 mW | 16 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
LP1310-SAD2 | 1310 nm | 2 mW | 13 mA / 40 mA | Ø5.6 mm, SM Pigtail | D | Yes | - | Yes | Single Frequencyd | |
LP1310-PAD2 | 1310 nm | 2 mW | 20 mA / 40 mA | Ø5.6 mm, PM Pigtail | D | Yes | - | Yes | Single Frequencyd | |
LPS-PM1310-FC | 1310 nm | 2.5 mW | 20 mA / 35 mA | Ø5.6 mm, PM Pigtaile | D | Yes | - | Yes | Single Transverse Mode | |
L1310P5DFBc | 1310 nm | 5 mW | 16 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
LPSC-1310-FC | 1310 nm | 50 mW | 350 mA / 500 mA | Ø5.6 mm, SM Pigtail | E | No | S7060R | Yes | Single Transverse Mode | |
FPL1053S | 1310 nm | 130 mW | 400 mA / 500 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1053P | 1310 nm | 130 mW | 400 mA / 500 mA | Butterfly, PM Pigtaile | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1053Tf | 1310 nm | 300 mW (Pulsed) |
750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode | |
FPL1053C | 1310 nm | 300 mW (Pulsed) |
750 mA / 1000 mA | Chip on Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
L1310G1 | 1310 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode | |
L1330P5DFBc | 1330 nm | 5 mW | 14 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1370G1 | 1370 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
BL1425-PAG500 | 1425 nm | 500 mW | 1.6 A / 2.1 A | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
BL1436-PAG500 | 1436 nm | 500 mW | 1.6 A / 2.1 A | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
L1450G1 | 1450 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode | |
BL1456-PAG500 | 1456 nm | 500 mW | 1.6 A / 2.1 A | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
L1470P5DFBe | 1470 nm | 5 mW | 19 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1480G1 | 1480 nm | 2000 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode | |
L1490P5DFBe | 1490 nm | 5 mW | 24 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1510P5DFBe | 1510 nm | 5 mW | 20 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1530P5DFBe | 1530 nm | 5 mW | 21 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd |
Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
LPS-1550-FC | 1550 nm | 1.5 mW | 30 mA / 50 mA | Ø5.6 mm, SM Pigtail | D | Yes | - | Yes | Single Transverse Mode | |
LPS-PM1550-FC | 1550 nm | 1.5 mW | 30 mA / 50 mA | Ø5.6 mm, PM Pigtailc | D | Yes | - | Yes | Single Transverse Mode | |
LP1550-SAD2 | 1550 nm | 2 mW | 20 mA / 40 mA | Ø5.6 mm, SM Pigtail | D | Yes | - | Yes | Single Frequencyd | |
LP1550-PAD2 | 1550 nm | 2 mW | 20 mA / 40 mA | Ø5.6 mm, PM Pigtailc | D | Yes | - | Yes | Single Frequencyd | |
L1550P5DFBe | 1550 nm | 5 mW | 20 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
ML925B45F | 1550 nm | 5 mW | 30 mA / 50 mA | Ø5.6 mm | D | Yes | - | No | Single Transverse Mode | |
SFL1550S | 1550 nm | 40 mW | 300 mA (Typ.) | Butterfly, SM Pigtail | 14-Pin Butterfly | No | - | Yes | Single Frequencyd | |
SFL1550P | 1550 nm | 40 mW | 300 mA (Typ.) | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Frequencyd | |
LPSC-1550-FC | 1550 nm | 50 mW | 250 mA / 500 mA | Ø5.6 mm, SM Pigtail | E | No | S7060R | Yes | Single Transverse Mode | |
FPL1009S | 1550 nm | 100 mW (Typ.) |
400 mA / 500 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1009P | 1550 nm | 100 mW (Typ.) |
400 mA / 500 mA | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
ULN15PCf | 1550 nm | 140 mW | 650 mA / 800 mA | Extended Butterfly, PM Pigtail |
See Spec Sheet |
Yes | - | Yes | Single Frequencyd | |
ULN15PTf | 1550 nm | 140 mW | 650 mA / 800 mA | Extended Butterfly, PM Pigtail |
See Spec Sheet |
Yes | - | Yes | Single Frequencyd | |
FPL1001C | 1550 nm | 150 mW | 400 mA / 500 mA | Chip on Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
FPL1055Tg | 1550 nm | 300 mW (Pulsed) | 750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode | |
FPL1055C | 1550 nm | 300 mW (Pulsed) | 750 mA / 1000 mA | Chip on Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
L1550G1 | 1550 nm | 1700 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode | |
DFB1550 | 1555 nm | 100 mW (Min) | 1000 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
DFB1550N | 1555 nm | 130 mW (Min) | 1800 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
DFB1550P | 1555 nm | 100 mW (Min) | 1000 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
DFB1550PN | 1555 nm | 130 mW (Min) | 1800 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencyd | |
L1570P5DFBe | 1570 nm | 5 mW | 25 mA / 40 mA | Ø5.6 mm | D | Yes | - | Yes | Single Frequencyd | |
L1575G1 | 1575 nm | 1700 mW | 5 A / 8 A | Ø9 mm | G | No | S8060 or S8060-4 | No | Multimode |
Item # | Info | Wavelength | Powera | Typical/Max Drive Currenta |
Package | Pin Code | Monitor Photodiodeb |
Compatible Socket |
Wavelength Tested |
Laser Mode |
---|---|---|---|---|---|---|---|---|---|---|
LPSC-1625-FC | 1625 nm | 50 mW | 350 mA / 500 mA | Ø5.6 mm, SM Pigtail | E | No | S7060R | Yes | Single Transverse Mode | |
FPL1054S | 1625 nm | 80 mW | 400 mA / 500 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1054P | 1625 nm | 80 mW | 400 mA / 500 mA | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1054C | 1625 nm | 250 mW (Pulsed) |
750 mA / 1000 mA | Chip on Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
FPL1054Td | 1625 nm | 200 mW (Pulsed) |
750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode | |
DFB1642 | 1642 nm | 80 mW | 900 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
DFB1642P | 1642 nm | 80 mW | 900 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
DFB1646 | 1646 nm | 80 mW | 900 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
DFB1646P | 1646 nm | 80 mW | 900 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
FPL1059S | 1650 nm | 80 mW | 400 mA / 500 mA | Butterfly, SM Pigtail | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
FPL1059P | 1650 nm | 80 mW | 400 mA / 500 mA | Butterfly, PM Pigtailc | 14-Pin Butterfly | No | - | Yes | Single Transverse Mode | |
DFB1650 | 1650 nm | 80 mW | 900 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
DFB1650P | 1650 nm | 80 mW | 900 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
FPL1059C | 1650 nm | 225 mW (Pulsed) |
750 mA / 1000 mA | Chip on Submount | See Spec Sheet | No | - | No | Single Transverse Mode | |
FPL1059Td | 1650 nm | 225 mW (Pulsed) |
750 mA / 1000 mA | Ø5.6 mm | E | No | S7060R | No | Single Transverse Mode | |
DFB1654 | 1654 nm | 80 mW | 900 mA (Max) | Butterfly, SM Pigtail | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye | |
DFB1654P | 1654 nm | 80 mW | 900 mA (Max) | Butterfly, PM Pigtailc | 14-Pin Butterfly | Yes | - | Yes | Single Frequencye |